Files
PX4-Autopilot/src/modules/fw_att_control/FixedwingAttitudeControl.cpp
2024-07-19 14:33:36 +02:00

483 lines
16 KiB
C++

/****************************************************************************
*
* Copyright (c) 2013-2023 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include "FixedwingAttitudeControl.hpp"
using namespace time_literals;
using namespace matrix;
using math::constrain;
using math::radians;
FixedwingAttitudeControl::FixedwingAttitudeControl(bool vtol) :
ModuleParams(nullptr),
ScheduledWorkItem(MODULE_NAME, px4::wq_configurations::nav_and_controllers),
_attitude_sp_pub(vtol ? ORB_ID(fw_virtual_attitude_setpoint) : ORB_ID(vehicle_attitude_setpoint)),
_loop_perf(perf_alloc(PC_ELAPSED, MODULE_NAME": cycle"))
{
/* fetch initial parameter values */
parameters_update();
}
FixedwingAttitudeControl::~FixedwingAttitudeControl()
{
perf_free(_loop_perf);
}
bool
FixedwingAttitudeControl::init()
{
if (!_att_sub.registerCallback()) {
PX4_ERR("callback registration failed");
return false;
}
return true;
}
void
FixedwingAttitudeControl::parameters_update()
{
_roll_ctrl.set_time_constant(_param_fw_r_tc.get());
_roll_ctrl.set_max_rate(radians(_param_fw_r_rmax.get()));
_pitch_ctrl.set_time_constant(_param_fw_p_tc.get());
_pitch_ctrl.set_max_rate_pos(radians(_param_fw_p_rmax_pos.get()));
_pitch_ctrl.set_max_rate_neg(radians(_param_fw_p_rmax_neg.get()));
_yaw_ctrl.set_max_rate(radians(_param_fw_y_rmax.get()));
_wheel_ctrl.set_k_p(_param_fw_wr_p.get());
_wheel_ctrl.set_k_i(_param_fw_wr_i.get());
_wheel_ctrl.set_k_ff(_param_fw_wr_ff.get());
_wheel_ctrl.set_integrator_max(_param_fw_wr_imax.get());
_wheel_ctrl.set_max_rate(radians(_param_fw_w_rmax.get()));
}
void
FixedwingAttitudeControl::vehicle_manual_poll(const float yaw_body)
{
if (_vcontrol_mode.flag_control_manual_enabled && _in_fw_or_transition_wo_tailsitter_transition) {
// Always copy the new manual setpoint, even if it wasn't updated, to fill the actuators with valid values
if (_manual_control_setpoint_sub.copy(&_manual_control_setpoint)) {
if (!_vcontrol_mode.flag_control_climb_rate_enabled && _vcontrol_mode.flag_control_attitude_enabled) {
// STABILIZED mode generate the attitude setpoint from manual user inputs
_att_sp.roll_body = _manual_control_setpoint.roll * radians(_param_fw_man_r_max.get());
_att_sp.pitch_body = -_manual_control_setpoint.pitch * radians(_param_fw_man_p_max.get())
+ radians(_param_fw_psp_off.get());
_att_sp.pitch_body = constrain(_att_sp.pitch_body,
-radians(_param_fw_man_p_max.get()), radians(_param_fw_man_p_max.get()));
_att_sp.yaw_body = yaw_body; // yaw is not controlled, so set setpoint to current yaw
_att_sp.thrust_body[0] = (_manual_control_setpoint.throttle + 1.f) * .5f;
Quatf q(Eulerf(_att_sp.roll_body, _att_sp.pitch_body, _att_sp.yaw_body));
q.copyTo(_att_sp.q_d);
_att_sp.reset_integral = false;
_att_sp.timestamp = hrt_absolute_time();
_attitude_sp_pub.publish(_att_sp);
}
}
}
}
void
FixedwingAttitudeControl::vehicle_attitude_setpoint_poll()
{
if (_att_sp_sub.update(&_att_sp)) {
_rates_sp.thrust_body[0] = _att_sp.thrust_body[0];
_rates_sp.thrust_body[1] = _att_sp.thrust_body[1];
_rates_sp.thrust_body[2] = _att_sp.thrust_body[2];
}
}
void
FixedwingAttitudeControl::vehicle_land_detected_poll()
{
if (_vehicle_land_detected_sub.updated()) {
vehicle_land_detected_s vehicle_land_detected {};
if (_vehicle_land_detected_sub.copy(&vehicle_land_detected)) {
_landed = vehicle_land_detected.landed;
}
}
}
float FixedwingAttitudeControl::get_airspeed_constrained()
{
_airspeed_validated_sub.update();
const bool airspeed_valid = PX4_ISFINITE(_airspeed_validated_sub.get().calibrated_airspeed_m_s)
&& (hrt_elapsed_time(&_airspeed_validated_sub.get().timestamp) < 1_s);
// if no airspeed measurement is available out best guess is to use the trim airspeed
float airspeed = _param_fw_airspd_trim.get();
if (_param_fw_use_airspd.get() && airspeed_valid) {
/* prevent numerical drama by requiring 0.5 m/s minimal speed */
airspeed = math::max(0.5f, _airspeed_validated_sub.get().calibrated_airspeed_m_s);
} else {
// VTOL: if we have no airspeed available and we are in hover mode then assume the lowest airspeed possible
// this assumption is good as long as the vehicle is not hovering in a headwind which is much larger
// than the stall airspeed
if (_vehicle_status.is_vtol && _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING
&& !_vehicle_status.in_transition_mode) {
airspeed = _param_fw_airspd_stall.get();
}
}
return math::constrain(airspeed, _param_fw_airspd_stall.get(), _param_fw_airspd_max.get());
}
void FixedwingAttitudeControl::Run()
{
if (should_exit()) {
_att_sub.unregisterCallback();
exit_and_cleanup();
return;
}
perf_begin(_loop_perf);
// only run controller if attitude changed
if (_att_sub.updated() || (hrt_elapsed_time(&_last_run) > 20_ms)) {
// only update parameters if they changed
const bool params_updated = _parameter_update_sub.updated();
// check for parameter updates
if (params_updated) {
// clear update
parameter_update_s pupdate;
_parameter_update_sub.copy(&pupdate);
// update parameters from storage
updateParams();
parameters_update();
}
float dt = 0.f;
static constexpr float DT_MIN = 0.002f;
static constexpr float DT_MAX = 0.04f;
vehicle_attitude_s att{};
if (_att_sub.copy(&att)) {
dt = math::constrain((att.timestamp_sample - _last_run) * 1e-6f, DT_MIN, DT_MAX);
_last_run = att.timestamp_sample;
// get current rotation matrix and euler angles from control state quaternions
_R = matrix::Quatf(att.q);
}
if (dt < DT_MIN || dt > DT_MAX) {
const hrt_abstime time_now_us = hrt_absolute_time();
dt = math::constrain((time_now_us - _last_run) * 1e-6f, DT_MIN, DT_MAX);
_last_run = time_now_us;
}
vehicle_angular_velocity_s angular_velocity{};
_vehicle_rates_sub.copy(&angular_velocity);
if (_vehicle_status.is_vtol_tailsitter) {
/* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode
*
* Since the VTOL airframe is initialized as a multicopter we need to
* modify the estimated attitude for the fixed wing operation.
* Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
* the pitch axis compared to the neutral position of the vehicle in multicopter mode
* we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
* Additionally, in order to get the correct sign of the pitch, we need to multiply
* the new x axis of the rotation matrix with -1
*
* original: modified:
*
* Rxx Ryx Rzx -Rzx Ryx Rxx
* Rxy Ryy Rzy -Rzy Ryy Rxy
* Rxz Ryz Rzz -Rzz Ryz Rxz
* */
matrix::Dcmf R_adapted = _R; //modified rotation matrix
/* move z to x */
R_adapted(0, 0) = _R(0, 2);
R_adapted(1, 0) = _R(1, 2);
R_adapted(2, 0) = _R(2, 2);
/* move x to z */
R_adapted(0, 2) = _R(0, 0);
R_adapted(1, 2) = _R(1, 0);
R_adapted(2, 2) = _R(2, 0);
/* change direction of pitch (convert to right handed system) */
R_adapted(0, 0) = -R_adapted(0, 0);
R_adapted(1, 0) = -R_adapted(1, 0);
R_adapted(2, 0) = -R_adapted(2, 0);
/* fill in new attitude data */
_R = R_adapted;
}
const matrix::Eulerf euler_angles(_R);
vehicle_manual_poll(euler_angles.psi());
vehicle_attitude_setpoint_poll();
// vehicle status update must be before the vehicle_control_mode poll, otherwise rate sp are not published during whole transition
_vehicle_status_sub.update(&_vehicle_status);
const bool is_in_transition_except_tailsitter = _vehicle_status.in_transition_mode
&& !_vehicle_status.is_vtol_tailsitter;
const bool is_fixed_wing = _vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_FIXED_WING;
_in_fw_or_transition_wo_tailsitter_transition = is_fixed_wing || is_in_transition_except_tailsitter;
_vehicle_control_mode_sub.update(&_vcontrol_mode);
vehicle_land_detected_poll();
bool wheel_control = false;
if (_param_fw_w_en.get() && _att_sp.fw_control_yaw_wheel && _vcontrol_mode.flag_control_auto_enabled) {
wheel_control = true;
}
/* if we are in rotary wing mode, do nothing */
if (_vehicle_status.vehicle_type == vehicle_status_s::VEHICLE_TYPE_ROTARY_WING && !_vehicle_status.is_vtol) {
perf_end(_loop_perf);
return;
}
if (_vcontrol_mode.flag_control_rates_enabled) {
/* Reset integrators if commanded by attitude setpoint, or the aircraft is on ground
* or a multicopter (but not transitioning VTOL or tailsitter)
*/
if (_att_sp.reset_integral
|| _landed
|| !_in_fw_or_transition_wo_tailsitter_transition) {
_rates_sp.reset_integral = true;
_wheel_ctrl.reset_integrator();
} else {
_rates_sp.reset_integral = false;
}
float groundspeed_scale = 1.f;
if (wheel_control) {
if (_local_pos_sub.updated()) {
vehicle_local_position_s vehicle_local_position;
if (_local_pos_sub.copy(&vehicle_local_position)) {
_groundspeed = sqrtf(vehicle_local_position.vx * vehicle_local_position.vx + vehicle_local_position.vy *
vehicle_local_position.vy);
}
}
// Use stall airspeed to calculate ground speed scaling region. Don't scale below gspd_scaling_trim
float gspd_scaling_trim = (_param_fw_airspd_stall.get());
if (_groundspeed > gspd_scaling_trim) {
groundspeed_scale = gspd_scaling_trim / _groundspeed;
}
}
/* Run attitude controllers */
if (_vcontrol_mode.flag_control_attitude_enabled && _in_fw_or_transition_wo_tailsitter_transition) {
if (PX4_ISFINITE(_att_sp.roll_body) && PX4_ISFINITE(_att_sp.pitch_body)) {
_roll_ctrl.control_roll(_att_sp.roll_body, _yaw_ctrl.get_euler_rate_setpoint(), euler_angles.phi(),
euler_angles.theta());
_pitch_ctrl.control_pitch(_att_sp.pitch_body, _yaw_ctrl.get_euler_rate_setpoint(), euler_angles.phi(),
euler_angles.theta());
_yaw_ctrl.control_yaw(_att_sp.roll_body, _pitch_ctrl.get_euler_rate_setpoint(), euler_angles.phi(),
euler_angles.theta(), get_airspeed_constrained());
if (wheel_control) {
_wheel_ctrl.control_attitude(_att_sp.yaw_body, euler_angles.psi());
} else {
_wheel_ctrl.reset_integrator();
}
/* Update input data for rate controllers */
Vector3f body_rates_setpoint = Vector3f(_roll_ctrl.get_body_rate_setpoint(), _pitch_ctrl.get_body_rate_setpoint(),
_yaw_ctrl.get_body_rate_setpoint());
autotune_attitude_control_status_s pid_autotune;
matrix::Vector3f bodyrate_autotune_ff;
if (_autotune_attitude_control_status_sub.copy(&pid_autotune)) {
if ((pid_autotune.state == autotune_attitude_control_status_s::STATE_ROLL
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_PITCH
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_YAW
|| pid_autotune.state == autotune_attitude_control_status_s::STATE_TEST)
&& ((hrt_absolute_time() - pid_autotune.timestamp) < 1_s)) {
bodyrate_autotune_ff = matrix::Vector3f(pid_autotune.rate_sp);
body_rates_setpoint += bodyrate_autotune_ff;
}
}
/* add yaw rate setpoint from sticks in all attitude-controlled modes */
if (_vcontrol_mode.flag_control_manual_enabled) {
body_rates_setpoint(2) += math::constrain(_manual_control_setpoint.yaw * radians(_param_man_yr_max.get()),
-radians(_param_fw_y_rmax.get()), radians(_param_fw_y_rmax.get()));
}
// Tailsitter: transform from FW to hover frame (all interfaces are in hover (body) frame)
if (_vehicle_status.is_vtol_tailsitter) {
body_rates_setpoint = Vector3f(body_rates_setpoint(2), body_rates_setpoint(1), -body_rates_setpoint(0));
}
/* Publish the rate setpoint for analysis once available */
_rates_sp.roll = body_rates_setpoint(0);
_rates_sp.pitch = body_rates_setpoint(1);
_rates_sp.yaw = body_rates_setpoint(2);
_rates_sp.timestamp = hrt_absolute_time();
_rate_sp_pub.publish(_rates_sp);
}
}
// wheel control
float wheel_u = 0.f;
if (_vcontrol_mode.flag_control_manual_enabled) {
// always direct control of steering wheel with yaw stick in manual modes
wheel_u = _manual_control_setpoint.yaw;
} else {
// XXX: yaw_sp_move_rate here is an abuse -- used to ferry manual yaw inputs from
// position controller during auto modes _manual_control_setpoint.r gets passed
// whenever nudging is enabled, otherwise zero
const float wheel_controller_output = _wheel_ctrl.control_bodyrate(dt, euler_angles.psi(), _groundspeed,
groundspeed_scale);
wheel_u = wheel_control ? wheel_controller_output + _att_sp.yaw_sp_move_rate : 0.f;
}
_landing_gear_wheel.normalized_wheel_setpoint = PX4_ISFINITE(wheel_u) ? wheel_u : 0.f;
_landing_gear_wheel.timestamp = hrt_absolute_time();
_landing_gear_wheel_pub.publish(_landing_gear_wheel);
} else {
// full manual
_wheel_ctrl.reset_integrator();
_landing_gear_wheel.normalized_wheel_setpoint = PX4_ISFINITE(_manual_control_setpoint.yaw) ?
_manual_control_setpoint.yaw : 0.f;
_landing_gear_wheel.timestamp = hrt_absolute_time();
_landing_gear_wheel_pub.publish(_landing_gear_wheel);
}
}
// backup schedule
ScheduleDelayed(20_ms);
perf_end(_loop_perf);
}
int FixedwingAttitudeControl::task_spawn(int argc, char *argv[])
{
bool vtol = false;
if (argc > 1) {
if (strcmp(argv[1], "vtol") == 0) {
vtol = true;
}
}
FixedwingAttitudeControl *instance = new FixedwingAttitudeControl(vtol);
if (instance) {
_object.store(instance);
_task_id = task_id_is_work_queue;
if (instance->init()) {
return PX4_OK;
}
} else {
PX4_ERR("alloc failed");
}
delete instance;
_object.store(nullptr);
_task_id = -1;
return PX4_ERROR;
}
int FixedwingAttitudeControl::custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
int FixedwingAttitudeControl::print_usage(const char *reason)
{
if (reason) {
PX4_WARN("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
fw_att_control is the fixed wing attitude controller.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("fw_att_control", "controller");
PRINT_MODULE_USAGE_COMMAND("start");
PRINT_MODULE_USAGE_ARG("vtol", "VTOL mode", true);
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[])
{
return FixedwingAttitudeControl::main(argc, argv);
}