Make it possible to disable shrinking/expanding layers

This commit is contained in:
igv
2017-09-03 18:42:33 +03:00
parent 5346bcf898
commit 7e828beb9a

View File

@@ -54,43 +54,16 @@ class FSRCNN(object):
self.checkpoint_dir = config.checkpoint_dir
self.output_dir = config.output_dir
self.data_dir = config.data_dir
self.build_model()
self.init_model()
def build_model(self):
def init_model(self):
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, self.c_dim], name='images')
self.labels = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, self.c_dim], name='labels')
# Batch size differs in training vs testing
self.batch = tf.placeholder(tf.int32, shape=[], name='batch')
# FSCRNN-s (fast) has smaller filters and less layers but can achieve faster performance
d, s, m = self.model_params
expand_weight, deconv_weight = 'w{}'.format(m + 3), 'w{}'.format(m + 4)
deconv_size = self.deconv_radius * 2 + 1
self.weights = {
'w1': tf.Variable(tf.random_normal([5, 5, 1, d], stddev=0.0378, dtype=tf.float32), name='w1'),
'w2': tf.Variable(tf.random_normal([1, 1, d, s], stddev=0.3536, dtype=tf.float32), name='w2'),
expand_weight: tf.Variable(tf.random_normal([1, 1, s, d], stddev=0.189, dtype=tf.float32), name=expand_weight),
deconv_weight: tf.Variable(tf.random_normal([deconv_size, deconv_size, 1, d], stddev=0.0001, dtype=tf.float32), name=deconv_weight)
}
expand_bias, deconv_bias = 'b{}'.format(m + 3), 'b{}'.format(m + 4)
self.biases = {
'b1': tf.Variable(tf.zeros([d]), name='b1'),
'b2': tf.Variable(tf.zeros([s]), name='b2'),
expand_bias: tf.Variable(tf.zeros([d]), name=expand_bias),
deconv_bias: tf.Variable(tf.zeros([1]), name=deconv_bias)
}
self.alphas = {}
# Create the m mapping layers weights/biases
for i in range(3, m + 3):
weight_name, bias_name = 'w{}'.format(i), 'b{}'.format(i)
self.weights[weight_name] = tf.Variable(tf.random_normal([3, 3, s, s], stddev=0.1179, dtype=tf.float32), name=weight_name)
self.biases[bias_name] = tf.Variable(tf.zeros([s]), name=bias_name)
self.weights, self.biases, self.alphas = {}, {}, {}
self.pred = self.model()
# Loss function (structural dissimilarity)
@@ -192,29 +165,46 @@ class FSRCNN(object):
array_image_save(result * 255, image_path)
def model(self):
d, s, m = self.model_params
# Feature Extraction
conv_feature = self.prelu(tf.nn.conv2d(self.images, self.weights['w1'], strides=[1,1,1,1], padding='VALID') + self.biases['b1'], 1)
self.weights['w1'] = tf.get_variable('w1', initializer=tf.random_normal([5, 5, 1, d], stddev=0.0378, dtype=tf.float32))
self.biases['b1'] = tf.get_variable('b1', initializer=tf.zeros([d]))
conv = self.prelu(tf.nn.conv2d(self.images, self.weights['w1'], strides=[1,1,1,1], padding='VALID') + self.biases['b1'], 1)
# Shrinking
conv_shrink = self.prelu(tf.nn.conv2d(conv_feature, self.weights['w2'], strides=[1,1,1,1], padding='SAME') + self.biases['b2'], 2)
if self.model_params[1] > 0:
self.weights['w2'] = tf.get_variable('w2', initializer=tf.random_normal([1, 1, d, s], stddev=0.3536, dtype=tf.float32))
self.biases['b2'] = tf.get_variable('b2', initializer=tf.zeros([s]))
conv = self.prelu(tf.nn.conv2d(conv, self.weights['w2'], strides=[1,1,1,1], padding='SAME') + self.biases['b2'], 2)
# Mapping (# mapping layers = m)
prev_layer, m = conv_shrink, self.model_params[2]
if s == 0:
s = d
for i in range(3, m + 3):
weights, biases = self.weights['w{}'.format(i)], self.biases['b{}'.format(i)]
prev_layer = self.prelu(tf.nn.conv2d(prev_layer, weights, strides=[1,1,1,1], padding='SAME') + biases, i)
weights = tf.get_variable('w{}'.format(i), initializer=tf.random_normal([3, 3, s, s], stddev=0.1179, dtype=tf.float32))
biases = tf.get_variable('b{}'.format(i), initializer=tf.zeros([s]))
self.weights['w{}'.format(i)], self.biases['b{}'.format(i)] = weights, biases
conv = self.prelu(tf.nn.conv2d(conv, weights, strides=[1,1,1,1], padding='SAME') + biases, i)
# Expanding
expand_weights, expand_biases = self.weights['w{}'.format(m + 3)], self.biases['b{}'.format(m + 3)]
conv_expand = self.prelu(tf.nn.conv2d(prev_layer, expand_weights, strides=[1,1,1,1], padding='SAME') + expand_biases, m + 3)
if self.model_params[1] > 0:
expand_weights = tf.get_variable('w{}'.format(m + 3), initializer=tf.random_normal([1, 1, s, d], stddev=0.189, dtype=tf.float32))
expand_biases = tf.get_variable('b{}'.format(m + 3), initializer=tf.zeros([d]))
self.weights['w{}'.format(m + 3)], self.biases['b{}'.format(m + 3)] = expand_weights, expand_biases
conv = self.prelu(tf.nn.conv2d(conv, expand_weights, strides=[1,1,1,1], padding='SAME') + expand_biases, m + 3)
# Deconvolution
deconv_size = self.deconv_radius * 2 + 1
deconv_weights = tf.get_variable('w{}'.format(m + 4), initializer=tf.random_normal([deconv_size, deconv_size, 1, d], stddev=0.0001, dtype=tf.float32))
deconv_biases = tf.get_variable('b{}'.format(m + 4), initializer=tf.zeros([1]))
self.weights['w{}'.format(m + 4)], self.biases['b{}'.format(m + 4)] = deconv_weights, deconv_biases
deconv_output = [self.batch, self.label_size, self.label_size, self.c_dim]
deconv_stride = [1, self.scale, self.scale, 1]
deconv_weights, deconv_biases = self.weights['w{}'.format(m + 4)], self.biases['b{}'.format(m + 4)]
conv_deconv = tf.nn.conv2d_transpose(conv_expand, deconv_weights, output_shape=deconv_output, strides=deconv_stride, padding='SAME') + deconv_biases
deconv = tf.nn.conv2d_transpose(conv, deconv_weights, output_shape=deconv_output, strides=deconv_stride, padding='SAME') + deconv_biases
return conv_deconv
return deconv
def prelu(self, _x, i):
"""