mirror of
https://github.com/igv/FSRCNN-TensorFlow.git
synced 2025-12-15 00:51:11 +08:00
246 lines
9.2 KiB
Python
246 lines
9.2 KiB
Python
from utils import (
|
|
read_data,
|
|
thread_train_setup,
|
|
train_input_setup,
|
|
test_input_setup,
|
|
save_params,
|
|
merge,
|
|
array_image_save,
|
|
tf_ssim,
|
|
tf_ms_ssim
|
|
)
|
|
|
|
import time
|
|
import os
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from PIL import Image
|
|
import pdb
|
|
|
|
# Based on http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
|
|
class FSRCNN(object):
|
|
|
|
def __init__(self, sess, config):
|
|
self.sess = sess
|
|
self.fast = config.fast
|
|
self.train = config.train
|
|
self.c_dim = config.c_dim
|
|
self.is_grayscale = (self.c_dim == 1)
|
|
self.epoch = config.epoch
|
|
self.scale = config.scale
|
|
self.batch_size = config.batch_size
|
|
self.learning_rate = config.learning_rate
|
|
self.threads = config.threads
|
|
self.distort = config.distort
|
|
self.params = config.params
|
|
|
|
# Different image/label sub-sizes for different scaling factors x2, x3, x4
|
|
scale_factors = [[24, 40], [18, 42], [16, 48]]
|
|
self.image_size, self.label_size = scale_factors[self.scale - 2]
|
|
# Testing uses different strides to ensure sub-images line up correctly
|
|
if not self.train:
|
|
self.stride = [20, 14, 12][self.scale - 2]
|
|
else:
|
|
self.stride = [12, 8, 7][self.scale - 2]
|
|
|
|
# Different model layer counts and filter sizes for FSRCNN vs FSRCNN-s (fast), (d, s, m) in paper
|
|
model_params = [[56, 12, 4], [32, 8, 1]]
|
|
self.model_params = model_params[self.fast]
|
|
|
|
self.deconv_radius = [3, 5, 7][self.scale - 2]
|
|
|
|
self.checkpoint_dir = config.checkpoint_dir
|
|
self.output_dir = config.output_dir
|
|
self.data_dir = config.data_dir
|
|
self.init_model()
|
|
|
|
|
|
def init_model(self):
|
|
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, self.c_dim], name='images')
|
|
self.labels = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, self.c_dim], name='labels')
|
|
# Batch size differs in training vs testing
|
|
self.batch = tf.placeholder(tf.int32, shape=[], name='batch')
|
|
self.weights, self.biases, self.alphas = {}, {}, {}
|
|
|
|
self.pred = self.model()
|
|
|
|
# Loss function (structural dissimilarity)
|
|
ssim = tf_ms_ssim(self.labels, self.pred, level=2)
|
|
self.loss = (1 - ssim) / 2
|
|
|
|
self.saver = tf.train.Saver()
|
|
|
|
def run(self):
|
|
self.train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
|
|
|
|
tf.global_variables_initializer().run()
|
|
|
|
if self.load(self.checkpoint_dir):
|
|
print(" [*] Load SUCCESS")
|
|
else:
|
|
print(" [!] Load failed...")
|
|
|
|
if self.params:
|
|
d, s, m = self.model_params
|
|
save_params(self.sess, d, s, m)
|
|
elif self.train:
|
|
self.run_train()
|
|
else:
|
|
self.run_test()
|
|
|
|
def run_train(self):
|
|
start_time = time.time()
|
|
print("Beginning training setup...")
|
|
if self.threads == 1:
|
|
train_input_setup(self)
|
|
else:
|
|
thread_train_setup(self)
|
|
print("Training setup took {} seconds with {} threads".format(time.time() - start_time, self.threads))
|
|
|
|
data_dir = os.path.join('./{}'.format(self.checkpoint_dir), "train.h5")
|
|
train_data, train_label = read_data(data_dir)
|
|
print("Total setup time took {} seconds with {} threads".format(time.time() - start_time, self.threads))
|
|
|
|
print("Training...")
|
|
start_time = time.time()
|
|
start_average, end_average, counter = 0, 0, 0
|
|
|
|
for ep in range(self.epoch):
|
|
# Run by batch images
|
|
batch_idxs = len(train_data) // self.batch_size
|
|
batch_average = 0
|
|
for idx in range(0, batch_idxs):
|
|
batch_images = train_data[idx * self.batch_size : (idx + 1) * self.batch_size]
|
|
batch_labels = train_label[idx * self.batch_size : (idx + 1) * self.batch_size]
|
|
|
|
counter += 1
|
|
_, err = self.sess.run([self.train_op, self.loss], feed_dict={self.images: batch_images, self.labels: batch_labels, self.batch: self.batch_size})
|
|
batch_average += err
|
|
|
|
if counter % 10 == 0:
|
|
print("Epoch: [%2d], step: [%2d], time: [%4.4f], loss: [%.8f]" \
|
|
% ((ep+1), counter, time.time() - start_time, err))
|
|
|
|
# Save every 200 steps
|
|
if counter % 200 == 0:
|
|
self.save(self.checkpoint_dir, counter)
|
|
|
|
batch_average = float(batch_average) / batch_idxs
|
|
if ep < (self.epoch * 0.2):
|
|
start_average += batch_average
|
|
elif ep >= (self.epoch * 0.8):
|
|
end_average += batch_average
|
|
|
|
# Compare loss of the first 20% and the last 20% epochs
|
|
start_average = float(start_average) / (self.epoch * 0.2)
|
|
end_average = float(end_average) / (self.epoch * 0.2)
|
|
print("Start Average: [%.6f], End Average: [%.6f], Improved: [%.2f%%]" \
|
|
% (start_average, end_average, 100 - (100*end_average/start_average)))
|
|
|
|
# Linux desktop notification when training has been completed
|
|
# title = "Training complete - FSRCNN"
|
|
# notification = "{}-{}-{} done training after {} epochs".format(self.image_size, self.label_size, self.stride, self.epoch);
|
|
# notify_command = 'notify-send "{}" "{}"'.format(title, notification)
|
|
# os.system(notify_command)
|
|
|
|
|
|
def run_test(self):
|
|
nx, ny = test_input_setup(self)
|
|
data_dir = os.path.join('./{}'.format(self.checkpoint_dir), "test.h5")
|
|
test_data, test_label = read_data(data_dir)
|
|
|
|
print("Testing...")
|
|
|
|
start_time = time.time()
|
|
result = self.pred.eval({self.images: test_data, self.labels: test_label, self.batch: nx * ny})
|
|
print("Took %.3f seconds" % (time.time() - start_time))
|
|
|
|
result = merge(result, [nx, ny, self.c_dim])
|
|
result = result.squeeze()
|
|
image_path = os.path.join(os.getcwd(), self.output_dir)
|
|
image_path = os.path.join(image_path, "test_image.png")
|
|
|
|
array_image_save(result * 255, image_path)
|
|
|
|
def model(self):
|
|
|
|
d, s, m = self.model_params
|
|
|
|
# Feature Extraction
|
|
self.weights['w1'] = tf.get_variable('w1', initializer=tf.random_normal([5, 5, 1, d], stddev=0.0378, dtype=tf.float32))
|
|
self.biases['b1'] = tf.get_variable('b1', initializer=tf.zeros([d]))
|
|
conv = self.prelu(tf.nn.conv2d(self.images, self.weights['w1'], strides=[1,1,1,1], padding='VALID') + self.biases['b1'], 1)
|
|
|
|
# Shrinking
|
|
if self.model_params[1] > 0:
|
|
self.weights['w2'] = tf.get_variable('w2', initializer=tf.random_normal([1, 1, d, s], stddev=0.3536, dtype=tf.float32))
|
|
self.biases['b2'] = tf.get_variable('b2', initializer=tf.zeros([s]))
|
|
conv = self.prelu(tf.nn.conv2d(conv, self.weights['w2'], strides=[1,1,1,1], padding='SAME') + self.biases['b2'], 2)
|
|
|
|
# Mapping (# mapping layers = m)
|
|
if s == 0:
|
|
s = d
|
|
for i in range(3, m + 3):
|
|
weights = tf.get_variable('w{}'.format(i), initializer=tf.random_normal([3, 3, s, s], stddev=0.1179, dtype=tf.float32))
|
|
biases = tf.get_variable('b{}'.format(i), initializer=tf.zeros([s]))
|
|
self.weights['w{}'.format(i)], self.biases['b{}'.format(i)] = weights, biases
|
|
conv = self.prelu(tf.nn.conv2d(conv, weights, strides=[1,1,1,1], padding='SAME') + biases, i)
|
|
|
|
# Expanding
|
|
if self.model_params[1] > 0:
|
|
expand_weights = tf.get_variable('w{}'.format(m + 3), initializer=tf.random_normal([1, 1, s, d], stddev=0.189, dtype=tf.float32))
|
|
expand_biases = tf.get_variable('b{}'.format(m + 3), initializer=tf.zeros([d]))
|
|
self.weights['w{}'.format(m + 3)], self.biases['b{}'.format(m + 3)] = expand_weights, expand_biases
|
|
conv = self.prelu(tf.nn.conv2d(conv, expand_weights, strides=[1,1,1,1], padding='SAME') + expand_biases, m + 3)
|
|
|
|
# Deconvolution
|
|
deconv_size = self.deconv_radius * 2 + 1
|
|
deconv_weights = tf.get_variable('w{}'.format(m + 4), initializer=tf.random_normal([deconv_size, deconv_size, 1, d], stddev=0.0001, dtype=tf.float32))
|
|
deconv_biases = tf.get_variable('b{}'.format(m + 4), initializer=tf.zeros([1]))
|
|
self.weights['w{}'.format(m + 4)], self.biases['b{}'.format(m + 4)] = deconv_weights, deconv_biases
|
|
deconv_output = [self.batch, self.label_size, self.label_size, self.c_dim]
|
|
deconv_stride = [1, self.scale, self.scale, 1]
|
|
deconv = tf.nn.conv2d_transpose(conv, deconv_weights, output_shape=deconv_output, strides=deconv_stride, padding='SAME') + deconv_biases
|
|
|
|
return deconv
|
|
|
|
def prelu(self, _x, i):
|
|
"""
|
|
PreLU tensorflow implementation
|
|
"""
|
|
alphas = tf.get_variable('alpha{}'.format(i), _x.get_shape()[-1], initializer=tf.constant_initializer(0.0), dtype=tf.float32)
|
|
self.alphas['alpha{}'.format(i)] = alphas
|
|
pos = tf.nn.relu(_x)
|
|
neg = alphas * (_x - abs(_x)) * 0.5
|
|
|
|
return pos + neg
|
|
|
|
def save(self, checkpoint_dir, step):
|
|
model_name = "FSRCNN.model"
|
|
d, s, m = self.model_params
|
|
model_dir = "%s_%s_%s-%s-%s" % ("fsrcnn", self.label_size, d, s, m)
|
|
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
|
|
|
|
if not os.path.exists(checkpoint_dir):
|
|
os.makedirs(checkpoint_dir)
|
|
|
|
self.saver.save(self.sess,
|
|
os.path.join(checkpoint_dir, model_name),
|
|
global_step=step)
|
|
|
|
def load(self, checkpoint_dir):
|
|
print(" [*] Reading checkpoints...")
|
|
d, s, m = self.model_params
|
|
model_dir = "%s_%s_%s-%s-%s" % ("fsrcnn", self.label_size, d, s, m)
|
|
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
|
|
|
|
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
|
|
if ckpt and ckpt.model_checkpoint_path:
|
|
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
|
|
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
|
|
return True
|
|
else:
|
|
return False
|