Remove old hwtimer/ktime/cputime subsystems and fix formatting

Co-authored-by: BernardXiong <1241087+BernardXiong@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot]
2025-12-29 12:12:07 +00:00
parent 9a3daf23ac
commit e9f911cbd4
29 changed files with 50 additions and 2616 deletions

View File

@@ -5,7 +5,6 @@ rsource "ipc/Kconfig"
rsource "serial/Kconfig"
rsource "can/Kconfig"
rsource "cputime/Kconfig"
rsource "i2c/Kconfig"
rsource "phy/Kconfig"
rsource "misc/Kconfig"
@@ -47,9 +46,7 @@ rsource "pic/Kconfig"
rsource "pin/Kconfig"
rsource "pinctrl/Kconfig"
rsource "clock_time/Kconfig"
rsource "ktime/Kconfig"
rsource "clk/Kconfig"
rsource "hwtimer/Kconfig"
rsource "usb/Kconfig"
endmenu

View File

@@ -12,7 +12,7 @@ if RT_USING_CLOCK_TIME
default y
help
Enable high-resolution software timers built on clock_time devices.
config RT_USING_CLOCK_CPUTIME
bool "Enable CPU time APIs"
default y
@@ -25,26 +25,4 @@ if RT_USING_CLOCK_TIME
help
Enable system boottime (monotonic time since boot) APIs.
# Backward compatibility options
config RT_USING_HWTIMER
bool
default y
help
Legacy option for backward compatibility with hwtimer.
Automatically enabled when RT_USING_CLOCK_TIME is enabled.
config RT_USING_KTIME
bool
default y if RT_USING_CLOCK_HRTIMER
help
Legacy option for backward compatibility with ktime.
Automatically enabled when RT_USING_CLOCK_HRTIMER is enabled.
config RT_USING_CPUTIME
bool
default y if RT_USING_CLOCK_CPUTIME
help
Legacy option for backward compatibility with cputime.
Automatically enabled when RT_USING_CLOCK_CPUTIME is enabled.
endif

View File

@@ -27,32 +27,32 @@ rt_err_t rt_clock_time_device_register(struct rt_clock_time_device *dev,
rt_uint8_t caps)
{
rt_err_t result;
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(name != RT_NULL);
RT_ASSERT(dev->ops != RT_NULL);
/* Initialize parent device structure */
dev->parent.type = RT_Device_Class_Timer;
dev->parent.rx_indicate = RT_NULL;
dev->parent.tx_complete = RT_NULL;
dev->parent.init = RT_NULL;
dev->parent.open = RT_NULL;
dev->parent.close = RT_NULL;
dev->parent.read = RT_NULL;
dev->parent.write = RT_NULL;
dev->parent.control = RT_NULL;
dev->caps = caps;
/* Calculate resolution scale factor */
if (dev->ops->get_freq)
{
rt_uint64_t freq = dev->ops->get_freq();
if (freq > 0)
{
/* res_scale = (1e9 * RT_CLOCK_TIME_RESMUL) / freq
/* res_scale = (1e9 * RT_CLOCK_TIME_RESMUL) / freq
* To avoid overflow, we check if freq is very small.
* For freq >= 1000, this calculation is safe on 64-bit.
* For very small frequencies, limit the scale factor.
@@ -76,7 +76,7 @@ rt_err_t rt_clock_time_device_register(struct rt_clock_time_device *dev,
{
dev->res_scale = RT_CLOCK_TIME_RESMUL;
}
/* Register device */
result = rt_device_register(&dev->parent, name, RT_DEVICE_FLAG_RDWR);
if (result != RT_EOK)
@@ -84,16 +84,16 @@ rt_err_t rt_clock_time_device_register(struct rt_clock_time_device *dev,
LOG_E("Failed to register clock_time device: %s", name);
return result;
}
/* Set as default if none exists */
if (_default_device == RT_NULL)
{
_default_device = dev;
LOG_D("Set %s as default clock_time device", name);
}
LOG_I("Registered clock_time device: %s (caps: 0x%02x)", name, caps);
return RT_EOK;
}
@@ -111,9 +111,9 @@ rt_clock_time_t rt_clock_time_default(void)
rt_err_t rt_clock_time_set_default(rt_clock_time_t dev)
{
RT_ASSERT(dev != RT_NULL);
_default_device = dev;
LOG_D("Changed default clock_time device to: %s", dev->parent.parent.name);
return RT_EOK;
}

View File

@@ -81,8 +81,8 @@ static unsigned long _cnt_convert(unsigned long cnt)
{
unsigned long rtn = 0;
unsigned long current_cnt = rt_clock_cputimer_getcnt();
/*
/*
* Check if target count is in the past.
* For unsigned counters, if cnt <= current_cnt, it means the target
* has already passed (or is exactly now).
@@ -91,10 +91,10 @@ static unsigned long _cnt_convert(unsigned long cnt)
{
return 0;
}
unsigned long count = cnt - current_cnt;
/*
/*
* Sanity check for wrap-around detection.
* If the difference exceeds half the maximum counter value, it's likely
* a wrap-around or invalid value. This handles both:
@@ -108,7 +108,7 @@ static unsigned long _cnt_convert(unsigned long cnt)
rt_uint64_t count_64 = (rt_uint64_t)count;
rt_uint64_t res_cpu = rt_clock_cputimer_getres();
rt_uint64_t res_hr = rt_clock_hrtimer_getres();
rtn = (unsigned long)((count_64 * res_cpu) / res_hr);
return rtn == 0 ? 1 : rtn; /* at least 1 */
}

View File

@@ -1,38 +0,0 @@
config RT_USING_CPUTIME
bool "Enable CPU time for high resolution clock counter (DEPRECATED - use RT_USING_CLOCK_TIME)"
default n
depends on !RT_USING_CLOCK_TIME
help
DEPRECATED: This option is maintained for backward compatibility only.
New projects should use RT_USING_CLOCK_TIME instead.
When enable this option, the BSP should provide a rt_clock_cputime_ops
for CPU time by:
const static struct rt_clock_cputime_ops _ops = {...};
clock_cpu_setops(&_ops);
Then user can use high resolution clock counter with:
ts1 = clock_cpu_gettime();
ts2 = clock_cpu_gettime();
/* and get the ms of delta tick with API: */
ms_tick = clock_cpu_millisecond(t2 - t1);
us_tick = clock_cpu_microsecond(t2 - t1);
if RT_USING_CPUTIME
config RT_USING_CPUTIME_CORTEXM
bool "Support Cortex-M CPU"
default y
depends on ARCH_ARM_CORTEX_M0 || ARCH_ARM_CORTEX_M3 || ARCH_ARM_CORTEX_M4 || ARCH_ARM_CORTEX_M7
select PKG_USING_PERF_COUNTER
config RT_USING_CPUTIME_RISCV
bool "Use rdtime instructions for CPU time"
default y
depends on ARCH_RISCV64
help
Some RISCV64 MCU Use rdtime instructions read CPU time.
config CPUTIME_TIMER_FREQ
int "CPUTIME timer freq"
default 0
endif

View File

@@ -1,18 +0,0 @@
from building import *
cwd = GetCurrentDir()
CPPPATH = [cwd + '/../include']
src = Split('''
cputime.c
cputimer.c
''')
if GetDepend('RT_USING_CPUTIME_CORTEXM'):
src += ['cputime_cortexm.c']
if GetDepend('RT_USING_CPUTIME_RISCV'):
src += ['cputime_riscv.c']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_CPUTIME'], CPPPATH = CPPPATH)
Return('group')

View File

@@ -1,116 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-12-23 Bernard first version
*/
#include <rtdevice.h>
#include <rtthread.h>
#include <sys/errno.h>
static const struct rt_clock_cputime_ops *_cputime_ops = RT_NULL;
/**
* The clock_cpu_getres() function shall return the resolution of CPU time, the
* number of nanosecond per tick.
*
* @return the number of nanosecond per tick(x (1000UL * 1000))
*/
uint64_t clock_cpu_getres(void)
{
if (_cputime_ops)
return _cputime_ops->cputime_getres();
rt_set_errno(ENOSYS);
return 0;
}
/**
* The clock_cpu_gettime() function shall return the current value of cpu time tick.
*
* @return the cpu tick
*/
uint64_t clock_cpu_gettime(void)
{
if (_cputime_ops)
return _cputime_ops->cputime_gettime();
rt_set_errno(ENOSYS);
return 0;
}
/**
* The clock_cpu_settimeout() fucntion set timeout time and timeout callback function
* The timeout callback function will be called when the timeout time is reached
*
* @param tick the Timeout tick
* @param timeout the Timeout function
* @param parameter the Parameters of timeout function
*
*/
int clock_cpu_settimeout(uint64_t tick, void (*timeout)(void *param), void *param)
{
if (_cputime_ops)
return _cputime_ops->cputime_settimeout(tick, timeout, param);
rt_set_errno(ENOSYS);
return 0;
}
int clock_cpu_issettimeout(void)
{
if (_cputime_ops)
return _cputime_ops->cputime_settimeout != RT_NULL;
return RT_FALSE;
}
/**
* The clock_cpu_microsecond() fucntion shall return the microsecond according to
* cpu_tick parameter.
*
* @param cpu_tick the cpu tick
*
* @return the microsecond
*/
uint64_t clock_cpu_microsecond(uint64_t cpu_tick)
{
uint64_t unit = clock_cpu_getres();
return (uint64_t)(((cpu_tick * unit) / (1000UL * 1000)) / 1000);
}
/**
* The clock_cpu_microsecond() fucntion shall return the millisecond according to
* cpu_tick parameter.
*
* @param cpu_tick the cpu tick
*
* @return the millisecond
*/
uint64_t clock_cpu_millisecond(uint64_t cpu_tick)
{
uint64_t unit = clock_cpu_getres();
return (uint64_t)(((cpu_tick * unit) / (1000UL * 1000)) / (1000UL * 1000));
}
/**
* The clock_cpu_seops() function shall set the ops of cpu time.
*
* @return always return 0.
*/
int clock_cpu_setops(const struct rt_clock_cputime_ops *ops)
{
_cputime_ops = ops;
if (ops)
{
RT_ASSERT(ops->cputime_getres != RT_NULL);
RT_ASSERT(ops->cputime_gettime != RT_NULL);
}
return 0;
}

View File

@@ -1,69 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-12-23 Bernard first version
* 2022-06-14 Meco Man suuport pref_counter
*/
#include <rthw.h>
#include <rtdevice.h>
#include <rtthread.h>
#include <board.h>
#ifdef PKG_USING_PERF_COUNTER
#include <perf_counter.h>
#endif
/* Use Cycle counter of Data Watchpoint and Trace Register for CPU time */
static uint64_t cortexm_cputime_getres(void)
{
uint64_t ret = 1000UL * 1000 * 1000;
ret = (ret * (1000UL * 1000)) / SystemCoreClock;
return ret;
}
static uint64_t cortexm_cputime_gettime(void)
{
#ifdef PKG_USING_PERF_COUNTER
return get_system_ticks();
#else
return DWT->CYCCNT;
#endif
}
const static struct rt_clock_cputime_ops _cortexm_ops =
{
cortexm_cputime_getres,
cortexm_cputime_gettime
};
int cortexm_cputime_init(void)
{
#ifdef PKG_USING_PERF_COUNTER
clock_cpu_setops(&_cortexm_ops);
#else
/* check support bit */
if ((DWT->CTRL & (1UL << DWT_CTRL_NOCYCCNT_Pos)) == 0)
{
/* enable trace*/
CoreDebug->DEMCR |= (1UL << CoreDebug_DEMCR_TRCENA_Pos);
/* whether cycle counter not enabled */
if ((DWT->CTRL & (1UL << DWT_CTRL_CYCCNTENA_Pos)) == 0)
{
/* enable cycle counter */
DWT->CTRL |= (1UL << DWT_CTRL_CYCCNTENA_Pos);
}
clock_cpu_setops(&_cortexm_ops);
}
#endif /* PKG_USING_PERF_COUNTER */
return 0;
}
INIT_BOARD_EXPORT(cortexm_cputime_init);

View File

@@ -1,37 +0,0 @@
#include <rthw.h>
#include <rtdevice.h>
#include <rtthread.h>
#include <board.h>
/* Use Cycle counter of Data Watchpoint and Trace Register for CPU time */
static uint64_t riscv_cputime_getres(void)
{
uint64_t ret = 1000UL * 1000 * 1000;
ret = (ret * (1000UL * 1000)) / CPUTIME_TIMER_FREQ;
return ret;
}
static uint64_t riscv_cputime_gettime(void)
{
uint64_t time_elapsed;
__asm__ __volatile__(
"rdtime %0"
: "=r"(time_elapsed));
return time_elapsed;
}
const static struct rt_clock_cputime_ops _riscv_ops =
{
riscv_cputime_getres,
riscv_cputime_gettime
};
int riscv_cputime_init(void)
{
clock_cpu_setops(&_riscv_ops);
return 0;
}
INIT_BOARD_EXPORT(riscv_cputime_init);

View File

@@ -1,339 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-13 zhkag first version
* 2023-04-03 xqyjlj fix cputimer in multithreading
*/
#include <rtdevice.h>
#include <rthw.h>
#include <rtthread.h>
static rt_list_t _cputimer_list = RT_LIST_OBJECT_INIT(_cputimer_list);
static struct rt_cputimer *_cputimer_nowtimer = RT_NULL;
static void _cputime_sleep_timeout(void *parameter)
{
struct rt_semaphore *sem;
sem = (struct rt_semaphore *)parameter;
rt_sem_release(sem);
}
static void _cputime_timeout_callback(void *parameter)
{
struct rt_cputimer *timer;
timer = (struct rt_cputimer *)parameter;
rt_base_t level;
level = rt_hw_interrupt_disable();
_cputimer_nowtimer = RT_NULL;
rt_list_remove(&(timer->row));
rt_hw_interrupt_enable(level);
timer->timeout_func(timer->parameter);
if (&_cputimer_list != _cputimer_list.prev)
{
struct rt_cputimer *t;
t = rt_list_entry(_cputimer_list.next, struct rt_cputimer, row);
clock_cpu_settimeout(t->timeout_tick, _cputime_timeout_callback, t);
}
else
{
clock_cpu_settimeout(RT_NULL, RT_NULL, RT_NULL);
}
}
static void _set_next_timeout()
{
struct rt_cputimer *t;
if (&_cputimer_list != _cputimer_list.prev)
{
t = rt_list_entry((&_cputimer_list)->next, struct rt_cputimer, row);
if (_cputimer_nowtimer != RT_NULL)
{
if (t != _cputimer_nowtimer && t->timeout_tick < _cputimer_nowtimer->timeout_tick)
{
_cputimer_nowtimer = t;
clock_cpu_settimeout(t->timeout_tick, _cputime_timeout_callback, t);
}
}
else
{
_cputimer_nowtimer = t;
clock_cpu_settimeout(t->timeout_tick, _cputime_timeout_callback, t);
}
}
else
{
_cputimer_nowtimer = RT_NULL;
clock_cpu_settimeout(RT_NULL, RT_NULL, RT_NULL);
}
}
void rt_cputimer_init(rt_cputimer_t timer,
const char *name,
void (*timeout)(void *parameter),
void *parameter,
rt_uint64_t tick,
rt_uint8_t flag)
{
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(timeout != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
/* set flag */
timer->parent.flag = flag;
/* set deactivated */
timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
timer->timeout_func = timeout;
timer->parameter = parameter;
timer->timeout_tick = tick + clock_cpu_gettime();
timer->init_tick = tick;
rt_list_init(&(timer->row));
rt_sem_init(&(timer->sem), "cputime", 0, RT_IPC_FLAG_PRIO);
}
rt_err_t rt_cputimer_delete(rt_cputimer_t timer)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
/* disable interrupt */
level = rt_hw_interrupt_disable();
rt_list_remove(&timer->row);
/* stop timer */
timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
/* enable interrupt */
rt_hw_interrupt_enable(level);
_set_next_timeout();
return RT_EOK;
}
rt_err_t rt_cputimer_start(rt_cputimer_t timer)
{
rt_list_t *timer_list;
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
/* stop timer firstly */
level = rt_hw_interrupt_disable();
/* remove timer from list */
rt_list_remove(&timer->row);
/* change status of timer */
timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
timer_list = &_cputimer_list;
for (; timer_list != _cputimer_list.prev;
timer_list = timer_list->next)
{
struct rt_cputimer *t;
rt_list_t *p = timer_list->next;
t = rt_list_entry(p, struct rt_cputimer, row);
if ((t->timeout_tick - timer->timeout_tick) == 0)
{
continue;
}
else if ((t->timeout_tick - timer->timeout_tick) < 0x7fffffffffffffff)
{
break;
}
}
rt_list_insert_after(timer_list, &(timer->row));
timer->parent.flag |= RT_TIMER_FLAG_ACTIVATED;
_set_next_timeout();
/* enable interrupt */
rt_hw_interrupt_enable(level);
return RT_EOK;
}
rt_err_t rt_cputimer_stop(rt_cputimer_t timer)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* timer check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
if (!(timer->parent.flag & RT_TIMER_FLAG_ACTIVATED))
{
rt_hw_interrupt_enable(level);
return -RT_ERROR;
}
rt_list_remove(&timer->row);
/* change status */
timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
_set_next_timeout();
/* enable interrupt */
rt_hw_interrupt_enable(level);
return RT_EOK;
}
rt_err_t rt_cputimer_control(rt_cputimer_t timer, int cmd, void *arg)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
level = rt_hw_interrupt_disable();
switch (cmd)
{
case RT_TIMER_CTRL_GET_TIME:
*(rt_uint64_t *)arg = timer->init_tick;
break;
case RT_TIMER_CTRL_SET_TIME:
RT_ASSERT((*(rt_uint64_t *)arg) < 0x7fffffffffffffff);
timer->init_tick = *(rt_uint64_t *)arg;
timer->timeout_tick = *(rt_uint64_t *)arg + clock_cpu_gettime();
break;
case RT_TIMER_CTRL_SET_ONESHOT:
timer->parent.flag &= ~RT_TIMER_FLAG_PERIODIC;
break;
case RT_TIMER_CTRL_SET_PERIODIC:
timer->parent.flag |= RT_TIMER_FLAG_PERIODIC;
break;
case RT_TIMER_CTRL_GET_STATE:
if (timer->parent.flag & RT_TIMER_FLAG_ACTIVATED)
{
/*timer is start and run*/
*(rt_uint32_t *)arg = RT_TIMER_FLAG_ACTIVATED;
}
else
{
/*timer is stop*/
*(rt_uint32_t *)arg = RT_TIMER_FLAG_DEACTIVATED;
}
break;
case RT_TIMER_CTRL_GET_REMAIN_TIME:
*(rt_uint64_t *)arg = timer->timeout_tick;
break;
case RT_TIMER_CTRL_GET_FUNC:
arg = (void *)timer->timeout_func;
break;
case RT_TIMER_CTRL_SET_FUNC:
timer->timeout_func = (void (*)(void *))arg;
break;
case RT_TIMER_CTRL_GET_PARM:
*(void **)arg = timer->parameter;
break;
case RT_TIMER_CTRL_SET_PARM:
timer->parameter = arg;
break;
default:
break;
}
rt_hw_interrupt_enable(level);
return RT_EOK;
}
rt_err_t rt_cputimer_detach(rt_cputimer_t timer)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(clock_cpu_issettimeout() != RT_FALSE);
/* disable interrupt */
level = rt_hw_interrupt_disable();
rt_list_remove(&timer->row);
/* stop timer */
timer->parent.flag &= ~RT_TIMER_FLAG_ACTIVATED;
_set_next_timeout();
/* enable interrupt */
rt_hw_interrupt_enable(level);
rt_sem_detach(&(timer->sem));
return RT_EOK;
}
rt_err_t rt_cputime_sleep(rt_uint64_t tick)
{
rt_base_t level;
struct rt_cputimer cputimer;
if (!clock_cpu_issettimeout())
{
rt_int32_t ms = clock_cpu_millisecond(tick);
return rt_thread_delay(rt_tick_from_millisecond(ms));
}
if (tick == 0)
{
return -RT_EINVAL;
}
rt_cputimer_init(&cputimer, "cputime_sleep", _cputime_sleep_timeout, &(cputimer.sem), tick,
RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
/* disable interrupt */
level = rt_hw_interrupt_disable();
rt_cputimer_start(&cputimer); /* reset the timeout of thread timer and start it */
rt_hw_interrupt_enable(level);
rt_sem_take_interruptible(&(cputimer.sem), RT_WAITING_FOREVER);
rt_cputimer_detach(&cputimer);
return RT_EOK;
}
rt_err_t rt_cputime_ndelay(rt_uint64_t ns)
{
uint64_t unit = clock_cpu_getres();
return rt_cputime_sleep(ns * (1000UL * 1000) / unit);
}
rt_err_t rt_cputime_udelay(rt_uint64_t us)
{
return rt_cputime_ndelay(us * 1000);
}
rt_err_t rt_cputime_mdelay(rt_uint64_t ms)
{
return rt_cputime_ndelay(ms * 1000000);
}

View File

@@ -1,18 +0,0 @@
menuconfig RT_USING_HWTIMER
bool "Using Hardware Timer device drivers (DEPRECATED - use RT_USING_CLOCK_TIME)"
default n
depends on !RT_USING_CLOCK_TIME
help
DEPRECATED: This option is maintained for backward compatibility only.
New projects should use RT_USING_CLOCK_TIME instead.
config RT_HWTIMER_ARM_ARCH
bool "ARM ARCH Timer"
depends on RT_USING_DM
depends on RT_USING_HWTIMER
depends on ARCH_ARM_CORTEX_A || ARCH_ARMV8
default n
if RT_USING_DM && RT_USING_HWTIMER
osource "$(SOC_DM_HWTIMER_DIR)/Kconfig"
endif

View File

@@ -1,18 +0,0 @@
from building import *
group = []
if not GetDepend(['RT_USING_HWTIMER']):
Return('group')
cwd = GetCurrentDir()
CPPPATH = [cwd + '/../include']
src = ['hwtimer.c']
if GetDepend(['RT_HWTIMER_ARM_ARCH']):
src += ['hwtimer-arm_arch.c']
group = DefineGroup('DeviceDrivers', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@@ -1,387 +0,0 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-12-20 GuEe-GUI first version
* 2022-08-24 GuEe-GUI Add OFW support
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
/* support registers access and timer registers in libcpu */
#include <cpu.h>
#include <cpuport.h>
typedef void (*timer_ctrl_handle)(rt_bool_t enable);
typedef rt_uint64_t (*timer_value_handle)(rt_uint64_t val);
static volatile rt_uint64_t timer_step;
static int arm_arch_timer_irq = -1;
static timer_ctrl_handle arm_arch_timer_ctrl_handle = RT_NULL;
static timer_value_handle arm_arch_timer_value_handle = RT_NULL;
/* CTL */
static void mon_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTPS_CTL, !!enable);
}
static void hyp_s_ptimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHPS_CTL, !!enable);
#endif
}
static void hyp_ns_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTHP_CTL, !!enable);
}
static void hyp_s_vtimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHVS_CTL, !!enable);
#endif
}
static void hyp_ns_vtimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHV_CTL, !!enable);
#endif
}
static void os_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTP_CTL, !!enable);
}
static void os_vtimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTV_CTL, !!enable);
}
/* TVAL */
static rt_uint64_t mon_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTPS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTPS_TVAL, val);
}
return val;
}
static rt_uint64_t hyp_s_ptimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHPS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHPS_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t hyp_ns_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTHP_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHP_TVAL, val);
}
return val;
}
static rt_uint64_t hyp_s_vtimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHVS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHVS_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t hyp_ns_vtimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHV_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHV_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t os_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTP_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTP_TVAL, val);
}
return val;
}
static rt_uint64_t os_vtimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTV_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTV_TVAL, val);
}
return val;
}
static timer_ctrl_handle ctrl_handle[] =
{
mon_ptimer_ctrl,
hyp_s_ptimer_ctrl,
hyp_ns_ptimer_ctrl,
hyp_s_vtimer_ctrl,
hyp_ns_vtimer_ctrl,
os_ptimer_ctrl,
os_vtimer_ctrl,
};
static timer_value_handle value_handle[] =
{
mon_ptimer_value,
hyp_s_ptimer_value,
hyp_ns_ptimer_value,
hyp_s_vtimer_value,
hyp_ns_vtimer_value,
os_ptimer_value,
os_vtimer_value,
};
rt_err_t arm_arch_timer_local_enable(void)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_irq >= 0)
{
arm_arch_timer_ctrl_handle(RT_FALSE);
arm_arch_timer_value_handle(timer_step);
rt_hw_interrupt_umask(arm_arch_timer_irq);
arm_arch_timer_ctrl_handle(RT_TRUE);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_err_t arm_arch_timer_local_disable(void)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_ctrl_handle)
{
arm_arch_timer_ctrl_handle(RT_FALSE);
rt_hw_interrupt_mask(arm_arch_timer_irq);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_err_t arm_arch_timer_set_frequency(rt_uint64_t frq)
{
rt_err_t ret = RT_EOK;
#ifdef ARCH_SUPPORT_TEE
rt_hw_isb();
rt_hw_sysreg_write(CNTFRQ, frq);
rt_hw_dsb();
#else
ret = -RT_ENOSYS;
#endif
return ret;
}
rt_uint64_t arm_arch_timer_get_frequency(void)
{
rt_uint64_t frq;
rt_hw_isb();
rt_hw_sysreg_read(CNTFRQ, frq);
rt_hw_isb();
return frq;
}
rt_err_t arm_arch_timer_set_value(rt_uint64_t val)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_value_handle)
{
val = arm_arch_timer_value_handle(val);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_uint64_t arm_arch_timer_get_value(void)
{
rt_uint64_t val = 0;
if (arm_arch_timer_value_handle)
{
val = arm_arch_timer_value_handle(0);
}
return val;
}
rt_uint64_t arm_arch_timer_get_count(void)
{
rt_uint64_t cntpct;
rt_hw_sysreg_read(CNTPCT, cntpct);
return cntpct;
}
static void arm_arch_timer_isr(int vector, void *param)
{
arm_arch_timer_set_value(timer_step);
rt_tick_increase();
}
static int arm_arch_timer_post_init(void)
{
arm_arch_timer_local_enable();
return 0;
}
INIT_SECONDARY_CPU_EXPORT(arm_arch_timer_post_init);
static rt_err_t arm_arch_timer_probe(struct rt_platform_device *pdev)
{
int mode_idx, irq_idx;
const char *irq_name[] =
{
"phys", /* Secure Phys IRQ */
"virt", /* Non-secure Phys IRQ */
"hyp-phys", /* Virt IRQ */
"hyp-virt", /* Hyp IRQ */
};
#if defined(ARCH_SUPPORT_TEE)
mode_idx = 0;
irq_idx = 0;
#elif defined(ARCH_SUPPORT_HYP)
mode_idx = 2;
irq_idx = 3;
#else
mode_idx = 5;
irq_idx = 1;
#endif
arm_arch_timer_irq = rt_dm_dev_get_irq_by_name(&pdev->parent, irq_name[irq_idx]);
if (arm_arch_timer_irq < 0)
{
arm_arch_timer_irq = rt_dm_dev_get_irq(&pdev->parent, irq_idx);
}
if (arm_arch_timer_irq < 0)
{
return -RT_EEMPTY;
}
arm_arch_timer_ctrl_handle = ctrl_handle[mode_idx];
arm_arch_timer_value_handle = value_handle[mode_idx];
rt_hw_interrupt_install(arm_arch_timer_irq, arm_arch_timer_isr, RT_NULL, "tick-arm-timer");
timer_step = arm_arch_timer_get_frequency() / RT_TICK_PER_SECOND;
arm_arch_timer_local_enable();
return RT_EOK;
}
static const struct rt_ofw_node_id arm_arch_timer_ofw_ids[] =
{
{ .compatible = "arm,armv7-timer", },
{ .compatible = "arm,armv8-timer", },
{ /* sentinel */ }
};
static struct rt_platform_driver arm_arch_timer_driver =
{
.name = "arm-arch-timer",
.ids = arm_arch_timer_ofw_ids,
.probe = arm_arch_timer_probe,
};
static int arm_arch_timer_drv_register(void)
{
rt_platform_driver_register(&arm_arch_timer_driver);
return 0;
}
INIT_SUBSYS_EXPORT(arm_arch_timer_drv_register);

View File

@@ -1,417 +0,0 @@
/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2015-08-31 heyuanjie87 first version
*/
#include <rtdevice.h>
#include <rthw.h>
#define DBG_TAG "hwtimer"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USING_DM
void (*rt_device_hwtimer_us_delay)(rt_uint32_t us) = RT_NULL;
void rt_hw_us_delay(rt_uint32_t us)
{
if (rt_device_hwtimer_us_delay)
{
rt_device_hwtimer_us_delay(us);
}
else
{
LOG_E("Implemented at least in the libcpu");
RT_ASSERT(0);
}
}
#endif /* RT_USING_DM */
rt_inline rt_uint32_t timeout_calc(rt_hwtimer_t *timer, rt_hwtimerval_t *tv)
{
float overflow;
float timeout;
rt_uint32_t counter;
int i, index = 0;
float tv_sec;
float devi_min = 1;
float devi;
/* changed to second */
overflow = timer->info->maxcnt/(float)timer->freq;
tv_sec = tv->sec + tv->usec/(float)1000000;
if (tv_sec < (1/(float)timer->freq))
{
/* little timeout */
i = 0;
timeout = 1/(float)timer->freq;
}
else
{
for (i = 1; i > 0; i ++)
{
timeout = tv_sec/i;
if (timeout <= overflow)
{
counter = (rt_uint32_t)(timeout * timer->freq);
devi = tv_sec - (counter / (float)timer->freq) * i;
/* Minimum calculation error */
if (devi > devi_min)
{
i = index;
timeout = tv_sec/i;
break;
}
else if (devi == 0)
{
break;
}
else if (devi < devi_min)
{
devi_min = devi;
index = i;
}
}
}
}
timer->cycles = i;
timer->reload = i;
timer->period_sec = timeout;
counter = (rt_uint32_t)(timeout * timer->freq);
return counter;
}
static rt_err_t rt_hwtimer_init(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
/* try to change to 1MHz */
if ((1000000 <= timer->info->maxfreq) && (1000000 >= timer->info->minfreq))
{
timer->freq = 1000000;
}
else
{
timer->freq = timer->info->minfreq;
}
timer->mode = HWTIMER_MODE_ONESHOT;
timer->cycles = 0;
timer->overflow = 0;
if (timer->ops->init)
{
timer->ops->init(timer, 1);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
static rt_err_t rt_hwtimer_open(struct rt_device *dev, rt_uint16_t oflag)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
if (timer->ops->control != RT_NULL)
{
timer->ops->control(timer, HWTIMER_CTRL_FREQ_SET, &timer->freq);
}
else
{
result = -RT_ENOSYS;
}
return result;
}
static rt_err_t rt_hwtimer_close(struct rt_device *dev)
{
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t*)dev;
if (timer->ops->init != RT_NULL)
{
timer->ops->init(timer, 0);
}
else
{
result = -RT_ENOSYS;
}
dev->flag &= ~RT_DEVICE_FLAG_ACTIVATED;
dev->rx_indicate = RT_NULL;
return result;
}
static rt_ssize_t rt_hwtimer_read(struct rt_device *dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_hwtimer_t *timer;
rt_hwtimerval_t tv;
rt_uint32_t cnt;
rt_base_t level;
rt_int32_t overflow;
float t;
timer = (rt_hwtimer_t *)dev;
if (timer->ops->count_get == RT_NULL)
return 0;
level = rt_hw_interrupt_disable();
cnt = timer->ops->count_get(timer);
overflow = timer->overflow;
rt_hw_interrupt_enable(level);
if (timer->info->cntmode == HWTIMER_CNTMODE_DW)
{
cnt = (rt_uint32_t)(timer->freq * timer->period_sec) - cnt;
}
if (timer->mode == HWTIMER_MODE_ONESHOT)
{
overflow = 0;
}
t = overflow * timer->period_sec + cnt/(float)timer->freq;
tv.sec = (rt_int32_t)t;
tv.usec = (rt_int32_t)((t - tv.sec) * 1000000);
size = size > sizeof(tv)? sizeof(tv) : size;
rt_memcpy(buffer, &tv, size);
return size;
}
static rt_ssize_t rt_hwtimer_write(struct rt_device *dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_base_t level;
rt_uint32_t t;
rt_hwtimer_mode_t opm = HWTIMER_MODE_PERIOD;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
if ((timer->ops->start == RT_NULL) || (timer->ops->stop == RT_NULL))
return 0;
if (size != sizeof(rt_hwtimerval_t))
return 0;
timer->ops->stop(timer);
level = rt_hw_interrupt_disable();
timer->overflow = 0;
rt_hw_interrupt_enable(level);
t = timeout_calc(timer, (rt_hwtimerval_t*)buffer);
if ((timer->cycles <= 1) && (timer->mode == HWTIMER_MODE_ONESHOT))
{
opm = HWTIMER_MODE_ONESHOT;
}
if (timer->ops->start(timer, t, opm) != RT_EOK)
size = 0;
return size;
}
static rt_err_t rt_hwtimer_control(struct rt_device *dev, int cmd, void *args)
{
rt_base_t level;
rt_err_t result = RT_EOK;
rt_hwtimer_t *timer;
timer = (rt_hwtimer_t *)dev;
switch (cmd)
{
case HWTIMER_CTRL_STOP:
{
if (timer->ops->stop != RT_NULL)
{
timer->ops->stop(timer);
}
else
{
result = -RT_ENOSYS;
}
}
break;
case HWTIMER_CTRL_FREQ_SET:
{
rt_int32_t *f;
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
f = (rt_int32_t*)args;
if ((*f > timer->info->maxfreq) || (*f < timer->info->minfreq))
{
LOG_W("frequency setting out of range! It will maintain at %d Hz", timer->freq);
result = -RT_EINVAL;
break;
}
if (timer->ops->control != RT_NULL)
{
result = timer->ops->control(timer, cmd, args);
if (result == RT_EOK)
{
level = rt_hw_interrupt_disable();
timer->freq = *f;
rt_hw_interrupt_enable(level);
}
}
else
{
result = -RT_ENOSYS;
}
}
break;
case HWTIMER_CTRL_INFO_GET:
{
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
*((struct rt_hwtimer_info*)args) = *timer->info;
}
break;
case HWTIMER_CTRL_MODE_SET:
{
rt_hwtimer_mode_t *m;
if (args == RT_NULL)
{
result = -RT_EEMPTY;
break;
}
m = (rt_hwtimer_mode_t*)args;
if ((*m != HWTIMER_MODE_ONESHOT) && (*m != HWTIMER_MODE_PERIOD))
{
result = -RT_ERROR;
break;
}
level = rt_hw_interrupt_disable();
timer->mode = *m;
rt_hw_interrupt_enable(level);
}
break;
default:
{
if (timer->ops->control != RT_NULL)
{
result = timer->ops->control(timer, cmd, args);
}
else
{
result = -RT_ENOSYS;
}
}
break;
}
return result;
}
void rt_device_hwtimer_isr(rt_hwtimer_t *timer)
{
rt_base_t level;
RT_ASSERT(timer != RT_NULL);
level = rt_hw_interrupt_disable();
timer->overflow ++;
if (timer->cycles != 0)
{
timer->cycles --;
}
if (timer->cycles == 0)
{
timer->cycles = timer->reload;
rt_hw_interrupt_enable(level);
if (timer->mode == HWTIMER_MODE_ONESHOT)
{
if (timer->ops->stop != RT_NULL)
{
timer->ops->stop(timer);
}
}
if (timer->parent.rx_indicate != RT_NULL)
{
timer->parent.rx_indicate(&timer->parent, sizeof(struct rt_hwtimerval));
}
}
else
{
rt_hw_interrupt_enable(level);
}
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops hwtimer_ops =
{
rt_hwtimer_init,
rt_hwtimer_open,
rt_hwtimer_close,
rt_hwtimer_read,
rt_hwtimer_write,
rt_hwtimer_control
};
#endif
rt_err_t rt_device_hwtimer_register(rt_hwtimer_t *timer, const char *name, void *user_data)
{
struct rt_device *device;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(timer->ops != RT_NULL);
RT_ASSERT(timer->info != RT_NULL);
device = &(timer->parent);
device->type = RT_Device_Class_Timer;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
#ifdef RT_USING_DEVICE_OPS
device->ops = &hwtimer_ops;
#else
device->init = rt_hwtimer_init;
device->open = rt_hwtimer_open;
device->close = rt_hwtimer_close;
device->read = rt_hwtimer_read;
device->write = rt_hwtimer_write;
device->control = rt_hwtimer_control;
#endif
device->user_data = user_data;
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
}

View File

@@ -1,38 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-12-23 Bernard first version
*/
#ifndef CPUTIME_H__
#define CPUTIME_H__
#include <stdint.h>
#include "cputimer.h"
struct rt_clock_cputime_ops
{
uint64_t (*cputime_getres)(void);
uint64_t (*cputime_gettime)(void);
int (*cputime_settimeout)(uint64_t tick, void (*timeout)(void *param), void *param);
};
uint64_t clock_cpu_getres(void);
uint64_t clock_cpu_gettime(void);
int clock_cpu_settimeout(uint64_t tick, void (*timeout)(void *param), void *param);
int clock_cpu_issettimeout(void);
uint64_t clock_cpu_microsecond(uint64_t cpu_tick);
uint64_t clock_cpu_millisecond(uint64_t cpu_tick);
int clock_cpu_setops(const struct rt_clock_cputime_ops *ops);
#ifdef RT_USING_CPUTIME_RISCV
int riscv_cputime_init(void);
#endif /* RT_USING_CPUTIME_RISCV */
#endif

View File

@@ -1,48 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-13 zhkag first version
*/
#ifndef CPUTIMER_H__
#define CPUTIMER_H__
#include <rtthread.h>
struct rt_cputimer
{
struct rt_object parent; /**< inherit from rt_object */
rt_list_t row;
void (*timeout_func)(void *parameter);
void *parameter;
rt_uint64_t init_tick;
rt_uint64_t timeout_tick;
struct rt_semaphore sem;
};
typedef struct rt_cputimer *rt_cputimer_t;
rt_err_t rt_cputimer_detach(rt_cputimer_t timer);
#ifdef RT_USING_HEAP
void rt_cputimer_init(rt_cputimer_t timer,
const char *name,
void (*timeout)(void *parameter),
void *parameter,
rt_uint64_t tick,
rt_uint8_t flag);
rt_err_t rt_cputimer_delete(rt_cputimer_t timer);
#endif
rt_err_t rt_cputimer_start(rt_cputimer_t timer);
rt_err_t rt_cputimer_stop(rt_cputimer_t timer);
rt_err_t rt_cputimer_control(rt_cputimer_t timer, int cmd, void *arg);
rt_err_t rt_cputime_sleep(rt_uint64_t tick);
rt_err_t rt_cputime_ndelay(rt_uint64_t ns);
rt_err_t rt_cputime_udelay(rt_uint64_t us);
rt_err_t rt_cputime_mdelay(rt_uint64_t ms);
#endif

View File

@@ -1,89 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
*/
#ifndef __HWTIMER_H__
#define __HWTIMER_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Timer Control Command */
typedef enum
{
HWTIMER_CTRL_FREQ_SET = RT_DEVICE_CTRL_BASE(Timer) + 0x01, /* set the count frequency */
HWTIMER_CTRL_STOP = RT_DEVICE_CTRL_BASE(Timer) + 0x02, /* stop timer */
HWTIMER_CTRL_INFO_GET = RT_DEVICE_CTRL_BASE(Timer) + 0x03, /* get a timer feature information */
HWTIMER_CTRL_MODE_SET = RT_DEVICE_CTRL_BASE(Timer) + 0x04 /* Setting the timing mode(oneshot/period) */
} rt_hwtimer_ctrl_t;
/* Timing Mode */
typedef enum
{
HWTIMER_MODE_ONESHOT = 0x01,
HWTIMER_MODE_PERIOD
} rt_hwtimer_mode_t;
/* Time Value */
typedef struct rt_hwtimerval
{
rt_int32_t sec; /* second */
rt_int32_t usec; /* microsecond */
} rt_hwtimerval_t;
#define HWTIMER_CNTMODE_UP 0x01 /* increment count mode */
#define HWTIMER_CNTMODE_DW 0x02 /* decreasing count mode */
struct rt_hwtimer_device;
struct rt_hwtimer_ops
{
void (*init)(struct rt_hwtimer_device *timer, rt_uint32_t state);
rt_err_t (*start)(struct rt_hwtimer_device *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode);
void (*stop)(struct rt_hwtimer_device *timer);
rt_uint32_t (*count_get)(struct rt_hwtimer_device *timer);
rt_err_t (*control)(struct rt_hwtimer_device *timer, rt_uint32_t cmd, void *args);
};
/* Timer Feature Information */
struct rt_hwtimer_info
{
rt_int32_t maxfreq; /* the maximum count frequency timer support */
rt_int32_t minfreq; /* the minimum count frequency timer support */
rt_uint32_t maxcnt; /* counter maximum value */
rt_uint8_t cntmode; /* count mode (inc/dec) */
};
typedef struct rt_hwtimer_device
{
struct rt_device parent;
const struct rt_hwtimer_ops *ops;
const struct rt_hwtimer_info *info;
rt_int32_t freq; /* counting frequency set by the user */
rt_int32_t overflow; /* timer overflows */
float period_sec;
rt_int32_t cycles; /* how many times will generate a timeout event after overflow */
rt_int32_t reload; /* reload cycles(using in period mode) */
rt_hwtimer_mode_t mode; /* timing mode(oneshot/period) */
} rt_hwtimer_t;
rt_err_t rt_device_hwtimer_register(rt_hwtimer_t *timer, const char *name, void *user_data);
void rt_device_hwtimer_isr(rt_hwtimer_t *timer);
#ifdef RT_USING_DM
extern void (*rt_device_hwtimer_us_delay)(rt_uint32_t us);
#endif
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -1,112 +0,0 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-01-01 RT-Thread Compatibility layer for legacy hwtimer API
*
* DEPRECATED: This header provides backward compatibility for the legacy hwtimer API.
* New code should use the unified clock_time subsystem instead.
* This compatibility layer will be removed in a future release.
*/
#ifndef __HWTIMER_H__
#define __HWTIMER_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* For backward compatibility, we keep the hwtimer types and APIs.
* If RT_USING_CLOCK_TIME is defined, these will map to clock_time.
* Otherwise, we include the original hwtimer implementation.
*/
#ifdef RT_USING_CLOCK_TIME
/* Timer Control Command */
typedef enum
{
HWTIMER_CTRL_FREQ_SET = RT_DEVICE_CTRL_BASE(Timer) + 0x01, /* set the count frequency */
HWTIMER_CTRL_STOP = RT_DEVICE_CTRL_BASE(Timer) + 0x02, /* stop timer */
HWTIMER_CTRL_INFO_GET = RT_DEVICE_CTRL_BASE(Timer) + 0x03, /* get a timer feature information */
HWTIMER_CTRL_MODE_SET = RT_DEVICE_CTRL_BASE(Timer) + 0x04 /* Setting the timing mode(oneshot/period) */
} rt_hwtimer_ctrl_t;
/* Timing Mode */
typedef enum
{
HWTIMER_MODE_ONESHOT = 0x01,
HWTIMER_MODE_PERIOD
} rt_hwtimer_mode_t;
/* Time Value */
typedef struct rt_hwtimerval
{
rt_int32_t sec; /* second */
rt_int32_t usec; /* microsecond */
} rt_hwtimerval_t;
#define HWTIMER_CNTMODE_UP 0x01 /* increment count mode */
#define HWTIMER_CNTMODE_DW 0x02 /* decreasing count mode */
struct rt_hwtimer_device;
struct rt_hwtimer_ops
{
void (*init)(struct rt_hwtimer_device *timer, rt_uint32_t state);
rt_err_t (*start)(struct rt_hwtimer_device *timer, rt_uint32_t cnt, rt_hwtimer_mode_t mode);
void (*stop)(struct rt_hwtimer_device *timer);
rt_uint32_t (*count_get)(struct rt_hwtimer_device *timer);
rt_err_t (*control)(struct rt_hwtimer_device *timer, rt_uint32_t cmd, void *args);
};
/* Timer Feature Information */
struct rt_hwtimer_info
{
rt_int32_t maxfreq; /* the maximum count frequency timer support */
rt_int32_t minfreq; /* the minimum count frequency timer support */
rt_uint32_t maxcnt; /* counter maximum value */
rt_uint8_t cntmode; /* count mode (inc/dec) */
};
typedef struct rt_hwtimer_device
{
struct rt_device parent;
const struct rt_hwtimer_ops *ops;
const struct rt_hwtimer_info *info;
rt_int32_t freq; /* counting frequency set by the user */
rt_int32_t overflow; /* timer overflows */
float period_sec;
rt_int32_t cycles; /* how many times will generate a timeout event after overflow */
rt_int32_t reload; /* reload cycles(using in period mode) */
rt_hwtimer_mode_t mode; /* timing mode(oneshot/period) */
} rt_hwtimer_t;
rt_err_t rt_device_hwtimer_register(rt_hwtimer_t *timer, const char *name, void *user_data);
void rt_device_hwtimer_isr(rt_hwtimer_t *timer);
#ifdef RT_USING_DM
extern void (*rt_device_hwtimer_us_delay)(rt_uint32_t us);
#endif
#else /* !RT_USING_CLOCK_TIME */
#warning "RT_USING_HWTIMER is deprecated. Please migrate to RT_USING_CLOCK_TIME. Include <drivers/clock_time.h> instead and use rt_clock_time_* APIs."
/* If clock_time is not enabled, this means the old hwtimer module should still exist */
/* The build system should handle this by including the old hwtimer directory */
#endif /* RT_USING_CLOCK_TIME */
#ifdef __cplusplus
}
#endif
#endif /* __HWTIMER_H__ */

View File

@@ -0,0 +1,31 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2025-01-01 RT-Thread Compatibility layer for legacy ktime API
*
* COMPATIBILITY HEADER:
* This header provides backward compatibility for code using the old ktime API.
* All rt_ktime_* APIs are now redirected to rt_clock_* APIs.
*
* The old ktime subsystem has been removed and replaced with the unified
* clock_time subsystem. Include <drivers/clock_time.h> for new code.
*/
#ifndef __KTIME_H__
#define __KTIME_H__
#ifdef RT_USING_CLOCK_TIME
/* Include the unified clock_time header which provides all APIs */
#include <drivers/clock_time.h>
/* All rt_ktime_* APIs are already defined as macros in clock_time.h */
#else
#error "ktime subsystem has been removed. Please enable RT_USING_CLOCK_TIME in menuconfig."
#endif /* RT_USING_CLOCK_TIME */
#endif /* __KTIME_H__ */

View File

@@ -246,18 +246,10 @@ extern "C" {
#include "drivers/clock_time.h"
#endif /* RT_USING_CLOCK_TIME */
#ifdef RT_USING_HWTIMER
#include "drivers/hwtimer.h"
#endif /* RT_USING_HWTIMER */
#ifdef RT_USING_AUDIO
#include "drivers/dev_audio.h"
#endif /* RT_USING_AUDIO */
#ifdef RT_USING_CPUTIME
#include "drivers/cputime.h"
#endif /* RT_USING_CPUTIME */
#ifdef RT_USING_ADC
#include "drivers/adc.h"
#endif /* RT_USING_ADC */

View File

@@ -1,7 +0,0 @@
menuconfig RT_USING_KTIME
bool "Ktime: kernel time (DEPRECATED - use RT_USING_CLOCK_TIME)"
default n
depends on !RT_USING_CLOCK_TIME
help
DEPRECATED: This option is maintained for backward compatibility only.
New projects should use RT_USING_CLOCK_TIME instead.

View File

@@ -1,63 +0,0 @@
# ktime
## 1、介绍
ktime 为 kernel time为内核时间子系统实现了内核启动时间以及芯片内核 cputimer 时间管理以及一个 ns 精度的高精度定时器,
## 2、如何打开 ktime
使用 ktime 需要在 RT-Thread 的 menuconfig 中选择它,具体路径如下:
```
RT-Thread Components
[*] Ktime: kernel time
```
## 3、使用 ktime
> 函数的功能以及参数类型已经写在头文件的注释之中,本文不再赘述
### 3.1、boottime
boottime 为系统启动时间,即为系统从上电开始到现在运行的时间,默认的时间基准为芯片内核的 cputimer 的 cnt 值,已经适配了 aarch64 与 riscv64 平台,例如 stm32 等平台需要在自己的 bsp 里面进行适配boottime 里面函数都为 weak function需要注意 tick 从中断到设置中间的时延
**此值应当为 Readonly**
### 3.2、cputimer
cputimer 为芯片内核的 cputimer也可以认为是 os tick 来源的那个定时器cputimer 主要是提供了一个统一的接口去获得其分辨率频率cnt 值
**此值应当为 Readonly**
### 3.3、hrtimer
> TODO: hrtimer 目前还是使用优先级链表的方式进行管理,在遇到任务的大规模并发时还是存在部分性能问题,待内核有一个统一的红黑树组件后,再进行优化
hrtimer 为高精度定时器,需要重写其 weak 函数(需要对接到硬件定时器,否则默认走的是软件定时器,分辨率只有 os tick 的值)才能正常使用,其主要使用方法:
#### 3.3.1、延时
hrtimer 的延时并不是 while(1)式死等,它会将一个线程挂起,睡眠多少时间后通过硬件定时器将其唤醒(注:延时 ns 并不是真的能准确的延时这么多,而是在保证性能的情况下尽可能的延时)
- rt_ktime_hrtimer_sleep单位为 cputimer 的 tick 值
- rt_ktime_hrtimer_ndelay单位为 ns
- rt_ktime_hrtimer_udelay单位为 us
- rt_ktime_hrtimer_mdelay单位为 ms
#### 3.3.1、定时器
hrtimer 还提供了一套 rt_timer 风格的 api
- rt_ktime_hrtimer_init
- rt_ktime_hrtimer_delete
- rt_ktime_hrtimer_start
- rt_ktime_hrtimer_stop
- rt_ktime_hrtimer_control
- rt_ktime_hrtimer_detach
需要注意,此定时器回调函数依旧处于中断之中,不能做一些耗时的任务
## 5、联系方式
- 维护xqyjlj
- 主页https://github.com/xqyjlj

View File

@@ -1,24 +0,0 @@
import os
from building import *
Import('rtconfig')
cwd = GetCurrentDir()
src = Glob('src/*.c')
list = os.listdir(cwd + "/src")
if rtconfig.ARCH in list:
if os.path.exists(cwd + "/src/" + rtconfig.ARCH + "/" + rtconfig.CPU):
src += Glob("src/" + rtconfig.ARCH + "/" + rtconfig.CPU + "/*.c")
else:
src += Glob("src/" + rtconfig.ARCH + "/*.c")
CPPPATH = [cwd, cwd + "/inc"]
LOCAL_CCFLAGS = ''
if rtconfig.PLATFORM in ['gcc', 'armclang']:
LOCAL_CCFLAGS += ' -std=gnu99'
elif rtconfig.PLATFORM in ['armcc']:
LOCAL_CCFLAGS += ' --c99 --gnu'
group = DefineGroup('DeviceDrivers', src, depend=['RT_USING_KTIME'], CPPPATH=CPPPATH, LOCAL_CCFLAGS = LOCAL_CCFLAGS)
Return('group')

View File

@@ -1,192 +0,0 @@
/*
* Copyright (c) 2006-2025, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
* 2024-04-26 Shell Improve ipc performance
* 2025-01-01 RT-Thread Compatibility layer for unified clock_time
*/
#ifndef __KTIME_H__
#define __KTIME_H__
#include <stdint.h>
#include <sys/time.h>
#include <ipc/completion.h>
#include "rtthread.h"
/*
* COMPATIBILITY LAYER:
* When RT_USING_CLOCK_TIME is enabled, this header redirects to the
* unified clock_time subsystem. All rt_ktime_* APIs are mapped to
* rt_clock_* APIs via macros defined in clock_time.h.
*
* When RT_USING_CLOCK_TIME is not enabled, the original ktime
* implementation is used.
*/
#ifdef RT_USING_CLOCK_TIME
/* Include the unified clock_time header which provides all APIs */
#include <drivers/clock_time.h>
/* All rt_ktime_* APIs are already defined as macros in clock_time.h */
/* No additional definitions needed here */
#else /* !RT_USING_CLOCK_TIME - Original ktime implementation */
#define RT_KTIME_RESMUL (1000000ULL)
struct rt_ktime_hrtimer
{
rt_uint8_t flag; /**< compatible to tick timer's flag */
char name[RT_NAME_MAX];
rt_list_t node;
void *parameter;
unsigned long delay_cnt;
unsigned long timeout_cnt;
rt_err_t error;
struct rt_completion completion;
void (*timeout_func)(void *parameter);
};
typedef struct rt_ktime_hrtimer *rt_ktime_hrtimer_t;
/**
* @brief Get boottime with us precision
*
* @param tv: timeval
* @return rt_err_t
*/
rt_err_t rt_ktime_boottime_get_us(struct timeval *tv);
/**
* @brief Get boottime with s precision
*
* @param t: time_t
* @return rt_err_t
*/
rt_err_t rt_ktime_boottime_get_s(time_t *t);
/**
* @brief Get boottime with ns precision
*
* @param ts: timespec
* @return rt_err_t
*/
rt_err_t rt_ktime_boottime_get_ns(struct timespec *ts);
/**
* @brief Get cputimer resolution
*
* @return (resolution * RT_KTIME_RESMUL)
*/
rt_uint64_t rt_ktime_cputimer_getres(void);
/**
* @brief Get cputimer frequency
*
* @return frequency
*/
unsigned long rt_ktime_cputimer_getfrq(void);
/**
* @brief Get cputimer the value of the cnt counter
*
* @return cnt
*/
unsigned long rt_ktime_cputimer_getcnt(void);
/**
* @brief Init cputimer
*
*/
void rt_ktime_cputimer_init(void);
/**
* @brief Get hrtimer resolution
*
* @return (resolution * RT_KTIME_RESMUL)
*/
rt_uint64_t rt_ktime_hrtimer_getres(void);
/**
* @brief Get hrtimer frequency
*
* @return frequency
*/
unsigned long rt_ktime_hrtimer_getfrq(void);
/**
* @brief set hrtimer interrupt timeout count (cnt), you should re-implemented it in hrtimer device driver
*
* @param cnt: hrtimer requires a timing cnt value
* @return rt_err_t
*/
rt_err_t rt_ktime_hrtimer_settimeout(unsigned long cnt);
/**
* @brief called in hrtimer device driver isr routinue, it will process the timeouts
*/
void rt_ktime_hrtimer_process(void);
void rt_ktime_hrtimer_init(rt_ktime_hrtimer_t timer,
const char *name,
rt_uint8_t flag,
void (*timeout)(void *parameter),
void *parameter);
rt_err_t rt_ktime_hrtimer_start(rt_ktime_hrtimer_t timer, unsigned long cnt);
rt_err_t rt_ktime_hrtimer_stop(rt_ktime_hrtimer_t timer);
rt_err_t rt_ktime_hrtimer_control(rt_ktime_hrtimer_t timer, int cmd, void *arg);
rt_err_t rt_ktime_hrtimer_detach(rt_ktime_hrtimer_t timer);
rt_inline void rt_ktime_hrtimer_keep_errno(rt_ktime_hrtimer_t timer, rt_err_t err)
{
RT_ASSERT(timer != RT_NULL);
timer->error = err;
rt_set_errno(-err);
}
void rt_ktime_hrtimer_delay_init(struct rt_ktime_hrtimer *timer);
void rt_ktime_hrtimer_delay_detach(struct rt_ktime_hrtimer *timer);
void rt_ktime_hrtimer_process(void);
/**
* @brief sleep by the cputimer cnt value
*
* @param cnt: the cputimer cnt value
* @return rt_err_t
*/
rt_err_t rt_ktime_hrtimer_sleep(struct rt_ktime_hrtimer *timer, unsigned long cnt);
/**
* @brief sleep by ns
*
* @param ns: ns
* @return rt_err_t
*/
rt_err_t rt_ktime_hrtimer_ndelay(struct rt_ktime_hrtimer *timer, unsigned long ns);
/**
* @brief sleep by us
*
* @param us: us
* @return rt_err_t
*/
rt_err_t rt_ktime_hrtimer_udelay(struct rt_ktime_hrtimer *timer, unsigned long us);
/**
* @brief sleep by ms
*
* @param ms: ms
* @return rt_err_t
*/
rt_err_t rt_ktime_hrtimer_mdelay(struct rt_ktime_hrtimer *timer, unsigned long ms);
#endif /* !RT_USING_CLOCK_TIME */
#endif /* __KTIME_H__ */

View File

@@ -1,34 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
*/
#include "gtimer.h"
#include "ktime.h"
static volatile unsigned long _init_cnt = 0;
rt_uint64_t rt_ktime_cputimer_getres(void)
{
return ((1000ULL * 1000 * 1000) * RT_KTIME_RESMUL) / rt_hw_get_gtimer_frq();
}
unsigned long rt_ktime_cputimer_getfrq(void)
{
return rt_hw_get_gtimer_frq();
}
unsigned long rt_ktime_cputimer_getcnt(void)
{
return rt_hw_get_cntpct_val() - _init_cnt;
}
void rt_ktime_cputimer_init(void)
{
_init_cnt = rt_hw_get_cntpct_val();
}

View File

@@ -1,48 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
*/
#include "ktime.h"
#define __KTIME_MUL ((1000ULL * 1000 * 1000) / RT_TICK_PER_SECOND)
rt_weak rt_err_t rt_ktime_boottime_get_us(struct timeval *tv)
{
RT_ASSERT(tv != RT_NULL);
rt_uint64_t ns = (rt_ktime_cputimer_getcnt() * rt_ktime_cputimer_getres()) / RT_KTIME_RESMUL;
tv->tv_sec = ns / (1000ULL * 1000 * 1000);
tv->tv_usec = (ns % (1000ULL * 1000 * 1000)) / 1000;
return RT_EOK;
}
rt_weak rt_err_t rt_ktime_boottime_get_s(time_t *t)
{
RT_ASSERT(t != RT_NULL);
rt_uint64_t ns = (rt_ktime_cputimer_getcnt() * rt_ktime_cputimer_getres()) / RT_KTIME_RESMUL;
*t = ns / (1000ULL * 1000 * 1000);
return RT_EOK;
}
rt_weak rt_err_t rt_ktime_boottime_get_ns(struct timespec *ts)
{
RT_ASSERT(ts != RT_NULL);
rt_uint64_t ns = (rt_ktime_cputimer_getcnt() * rt_ktime_cputimer_getres()) / RT_KTIME_RESMUL;
ts->tv_sec = ns / (1000ULL * 1000 * 1000);
ts->tv_nsec = ns % (1000ULL * 1000 * 1000);
return RT_EOK;
}

View File

@@ -1,31 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
*/
#include "ktime.h"
rt_weak rt_uint64_t rt_ktime_cputimer_getres(void)
{
return ((1000ULL * 1000 * 1000) * RT_KTIME_RESMUL) / RT_TICK_PER_SECOND;
}
rt_weak unsigned long rt_ktime_cputimer_getfrq(void)
{
return RT_TICK_PER_SECOND;
}
rt_weak unsigned long rt_ktime_cputimer_getcnt(void)
{
return rt_tick_get();
}
rt_weak void rt_ktime_cputimer_init(void)
{
return;
}

View File

@@ -1,386 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
* 2023-09-15 xqyjlj perf rt_hw_interrupt_disable/enable
*/
#include <rtdevice.h>
#include <rthw.h>
#include <rtthread.h>
#define DBG_SECTION_NAME "drv.ktime"
#define DBG_LEVEL DBG_INFO
#include <rtdbg.h>
#include "ktime.h"
#ifdef ARCH_CPU_64BIT
#define _HRTIMER_MAX_CNT UINT64_MAX
#else
#define _HRTIMER_MAX_CNT UINT32_MAX
#endif
static rt_list_t _timer_list = RT_LIST_OBJECT_INIT(_timer_list);
static RT_DEFINE_SPINLOCK(_spinlock);
rt_inline rt_ktime_hrtimer_t _first_hrtimer(void)
{
return rt_list_isempty(&_timer_list) ? RT_NULL : rt_list_first_entry(&_timer_list, struct rt_ktime_hrtimer, node);
}
rt_weak rt_uint64_t rt_ktime_hrtimer_getres(void)
{
return ((1000ULL * 1000 * 1000) * RT_KTIME_RESMUL) / RT_TICK_PER_SECOND;
}
rt_weak unsigned long rt_ktime_hrtimer_getfrq(void)
{
return RT_TICK_PER_SECOND;
}
rt_weak rt_err_t rt_ktime_hrtimer_settimeout(unsigned long cnt)
{
static rt_timer_t timer = RT_NULL;
static struct rt_timer _sh_rtimer;
RT_ASSERT(cnt > 0);
if (timer == RT_NULL)
{
timer = &_sh_rtimer;
rt_timer_init(timer, "shrtimer", (void (*)(void *))rt_ktime_hrtimer_process, RT_NULL, cnt, RT_TIMER_FLAG_ONE_SHOT);
}
else
{
rt_tick_t tick = cnt;
rt_timer_control(timer, RT_TIMER_CTRL_SET_TIME, &tick);
rt_timer_control(timer, RT_TIMER_CTRL_SET_PARM, RT_NULL);
}
if (timer->parent.flag & RT_TIMER_FLAG_ACTIVATED)
{
rt_timer_stop(timer);
}
rt_timer_start(timer);
return RT_EOK;
}
/**
* @brief convert cnt from cputimer cnt to hrtimer cnt
*
* @param cnt
* @return unsigned long
*/
static unsigned long _cnt_convert(unsigned long cnt)
{
unsigned long rtn = 0;
unsigned long count = cnt - rt_ktime_cputimer_getcnt();
if (count > (_HRTIMER_MAX_CNT / 2))
return 0;
rtn = (count * rt_ktime_cputimer_getres()) / rt_ktime_hrtimer_getres();
return rtn == 0 ? 1 : rtn; /* at least 1 */
}
static void _sleep_timeout(void *parameter)
{
struct rt_ktime_hrtimer *timer = parameter;
rt_completion_done(&timer->completion);
}
static void _insert_timer_to_list_locked(rt_ktime_hrtimer_t timer)
{
rt_ktime_hrtimer_t iter;
rt_list_for_each_entry(iter, &_timer_list, node)
{
if (iter->timeout_cnt > timer->timeout_cnt)
{
break;
}
}
rt_list_insert_before(&iter->node, &(timer->node));
timer->flag |= RT_TIMER_FLAG_ACTIVATED;
}
static void _hrtimer_process_locked(void)
{
rt_ktime_hrtimer_t timer;
for (timer = _first_hrtimer();
(timer != RT_NULL) && (timer->timeout_cnt <= rt_ktime_cputimer_getcnt());
timer = _first_hrtimer())
{
rt_list_remove(&(timer->node));
if (timer->flag & RT_TIMER_FLAG_PERIODIC)
{
timer->timeout_cnt = timer->delay_cnt + rt_ktime_cputimer_getcnt();
_insert_timer_to_list_locked(timer);
}
else
{
timer->flag &= ~RT_TIMER_FLAG_ACTIVATED;
}
if (timer->timeout_func)
{
timer->timeout_func(timer->parameter);
}
}
}
static void _set_next_timeout_locked(void)
{
rt_ktime_hrtimer_t timer;
rt_ubase_t next_timeout_hrtimer_cnt;
rt_bool_t find_next;
do
{
find_next = RT_FALSE;
if ((timer = _first_hrtimer()) != RT_NULL)
{
next_timeout_hrtimer_cnt = _cnt_convert(timer->timeout_cnt);
if (next_timeout_hrtimer_cnt > 0)
{
rt_ktime_hrtimer_settimeout(next_timeout_hrtimer_cnt);
}
else
{
_hrtimer_process_locked();
find_next = RT_TRUE;
}
}
}
while (find_next);
}
void rt_ktime_hrtimer_process(void)
{
rt_base_t level = rt_spin_lock_irqsave(&_spinlock);
_hrtimer_process_locked();
_set_next_timeout_locked();
rt_spin_unlock_irqrestore(&_spinlock, level);
}
void rt_ktime_hrtimer_init(rt_ktime_hrtimer_t timer,
const char *name,
rt_uint8_t flag,
void (*timeout)(void *parameter),
void *parameter)
{
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(timeout != RT_NULL);
rt_memset(timer, 0, sizeof(struct rt_ktime_hrtimer));
timer->flag = flag & ~RT_TIMER_FLAG_ACTIVATED;
timer->timeout_func = timeout;
timer->parameter = parameter;
rt_strncpy(timer->name, name, RT_NAME_MAX - 1);
rt_list_init(&(timer->node));
rt_completion_init(&timer->completion);
}
rt_err_t rt_ktime_hrtimer_start(rt_ktime_hrtimer_t timer, unsigned long delay_cnt)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(delay_cnt < (_HRTIMER_MAX_CNT / 2));
timer->delay_cnt = delay_cnt;
timer->timeout_cnt = timer->delay_cnt + rt_ktime_cputimer_getcnt();
level = rt_spin_lock_irqsave(&_spinlock);
if (timer->flag & RT_TIMER_FLAG_ACTIVATED)
{
rt_spin_unlock_irqrestore(&_spinlock, level);
return -RT_ERROR;
}
_insert_timer_to_list_locked(timer);
_set_next_timeout_locked();
rt_spin_unlock_irqrestore(&_spinlock, level);
return RT_EOK;
}
rt_err_t rt_ktime_hrtimer_stop(rt_ktime_hrtimer_t timer)
{
rt_base_t level;
RT_ASSERT(timer != RT_NULL); /* timer check */
level = rt_spin_lock_irqsave(&_spinlock);
if (!(timer->flag & RT_TIMER_FLAG_ACTIVATED))
{
rt_spin_unlock_irqrestore(&_spinlock, level);
return -RT_ERROR;
}
rt_list_remove(&timer->node);
timer->flag &= ~RT_TIMER_FLAG_ACTIVATED;
_set_next_timeout_locked();
rt_spin_unlock_irqrestore(&_spinlock, level);
return RT_EOK;
}
rt_err_t rt_ktime_hrtimer_control(rt_ktime_hrtimer_t timer, int cmd, void *arg)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
level = rt_spin_lock_irqsave(&_spinlock);
switch (cmd)
{
case RT_TIMER_CTRL_GET_TIME:
*(unsigned long *)arg = timer->delay_cnt;
break;
case RT_TIMER_CTRL_SET_TIME:
RT_ASSERT((*(unsigned long *)arg) < (_HRTIMER_MAX_CNT / 2));
timer->delay_cnt = *(unsigned long *)arg;
timer->timeout_cnt = *(unsigned long *)arg + rt_ktime_cputimer_getcnt();
break;
case RT_TIMER_CTRL_SET_ONESHOT:
timer->flag &= ~RT_TIMER_FLAG_PERIODIC;
break;
case RT_TIMER_CTRL_SET_PERIODIC:
timer->flag |= RT_TIMER_FLAG_PERIODIC;
break;
case RT_TIMER_CTRL_GET_STATE:
if (timer->flag & RT_TIMER_FLAG_ACTIVATED)
{
/*timer is start and run*/
*(rt_uint32_t *)arg = RT_TIMER_FLAG_ACTIVATED;
}
else
{
/*timer is stop*/
*(rt_uint32_t *)arg = RT_TIMER_FLAG_DEACTIVATED;
}
break;
case RT_TIMER_CTRL_GET_REMAIN_TIME:
*(unsigned long *)arg = timer->timeout_cnt;
break;
case RT_TIMER_CTRL_GET_FUNC:
arg = (void *)timer->timeout_func;
break;
case RT_TIMER_CTRL_SET_FUNC:
timer->timeout_func = (void (*)(void *))arg;
break;
case RT_TIMER_CTRL_GET_PARM:
*(void **)arg = timer->parameter;
break;
case RT_TIMER_CTRL_SET_PARM:
timer->parameter = arg;
break;
default:
break;
}
rt_spin_unlock_irqrestore(&_spinlock, level);
return RT_EOK;
}
rt_err_t rt_ktime_hrtimer_detach(rt_ktime_hrtimer_t timer)
{
rt_base_t level;
/* parameter check */
RT_ASSERT(timer != RT_NULL);
/* notify the timer stop event */
rt_completion_wakeup_by_errno(&timer->completion, RT_ERROR);
level = rt_spin_lock_irqsave(&_spinlock);
/* stop timer */
timer->flag &= ~RT_TIMER_FLAG_ACTIVATED;
/* when interrupted */
if (timer->error == -RT_EINTR || timer->error == RT_EINTR)
{
rt_list_remove(&timer->node);
_set_next_timeout_locked();
}
rt_spin_unlock_irqrestore(&_spinlock, level);
return RT_EOK;
}
/************************** delay ***************************/
void rt_ktime_hrtimer_delay_init(struct rt_ktime_hrtimer *timer)
{
rt_ktime_hrtimer_init(timer, "hrtimer_sleep", RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_HARD_TIMER,
_sleep_timeout, timer);
}
void rt_ktime_hrtimer_delay_detach(struct rt_ktime_hrtimer *timer)
{
rt_ktime_hrtimer_detach(timer);
}
rt_err_t rt_ktime_hrtimer_sleep(struct rt_ktime_hrtimer *timer, unsigned long cnt)
{
rt_err_t err;
if (cnt == 0)
return -RT_EINVAL;
err = rt_ktime_hrtimer_start(timer, cnt);
if (err)
return err;
err = rt_completion_wait_flags(&(timer->completion), RT_WAITING_FOREVER,
RT_INTERRUPTIBLE);
rt_ktime_hrtimer_keep_errno(timer, err);
return err;
}
rt_err_t rt_ktime_hrtimer_ndelay(struct rt_ktime_hrtimer *timer, unsigned long ns)
{
rt_uint64_t res = rt_ktime_cputimer_getres();
return rt_ktime_hrtimer_sleep(timer, (ns * RT_KTIME_RESMUL) / res);
}
rt_err_t rt_ktime_hrtimer_udelay(struct rt_ktime_hrtimer *timer, unsigned long us)
{
return rt_ktime_hrtimer_ndelay(timer, us * 1000);
}
rt_err_t rt_ktime_hrtimer_mdelay(struct rt_ktime_hrtimer *timer, unsigned long ms)
{
return rt_ktime_hrtimer_ndelay(timer, ms * 1000000);
}

View File

@@ -1,35 +0,0 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-07-10 xqyjlj The first version.
*/
#include "ktime.h"
static volatile unsigned long _init_cnt = 0;
rt_uint64_t rt_ktime_cputimer_getres(void)
{
return ((1000ULL * 1000 * 1000) * RT_KTIME_RESMUL) / CPUTIME_TIMER_FREQ;
}
unsigned long rt_ktime_cputimer_getfrq(void)
{
return CPUTIME_TIMER_FREQ;
}
unsigned long rt_ktime_cputimer_getcnt(void)
{
unsigned long time_elapsed;
__asm__ __volatile__("rdtime %0" : "=r"(time_elapsed));
return time_elapsed - _init_cnt;
}
void rt_ktime_cputimer_init(void)
{
__asm__ __volatile__("rdtime %0" : "=r"(_init_cnt));
}