[clock_time] Add comprehensive examples and test code

- Created clock_time_example.c with 7 different usage examples
- Added examples for info display, boottime, conversion, delays, timers
- Included performance benchmark example
- Added comprehensive examples README with troubleshooting guide

Co-authored-by: BernardXiong <1241087+BernardXiong@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot]
2025-12-04 15:37:04 +00:00
parent 0f3a297f4d
commit 0866b88dc6
2 changed files with 544 additions and 0 deletions

View File

@@ -0,0 +1,241 @@
# Clock Time Examples
This directory contains examples demonstrating the use of the unified `clock_time` subsystem.
## Prerequisites
Enable `RT_USING_CLOCK_TIME` in your configuration:
```
CONFIG_RT_USING_CLOCK_TIME=y
```
## Available Examples
### 1. Clock Time Information (`clock_time_info_example`)
Displays basic information about the clock_time device:
- Clock frequency
- Clock resolution
- Current counter value
- Device capabilities
**Usage:**
```
msh> clock_time_info_example
```
### 2. Boottime Tracking (`clock_boottime_example`)
Shows system uptime in different formats:
- Nanosecond precision
- Microsecond precision
- Second precision
**Usage:**
```
msh> clock_boottime_example
```
### 3. Time Conversion (`clock_conversion_example`)
Demonstrates conversion between counter ticks and time units (ms, us, ns).
**Usage:**
```
msh> clock_conversion_example
```
### 4. High-Precision Delay (`clock_delay_example`)
Tests high-precision delay functions and measures actual delays:
- Microsecond delays (`rt_clock_udelay`)
- Millisecond delays (`rt_clock_mdelay`)
**Usage:**
```
msh> clock_delay_example
```
### 5. One-Shot Timer (`clock_hrtimer_oneshot_example`)
Demonstrates using a high-resolution timer for one-shot timeouts.
**Usage:**
```
msh> clock_hrtimer_oneshot_example
```
**Expected Output:**
```
=== High-Resolution Timer (One-Shot) Example ===
Starting timer for 500ms...
Timer started successfully
High-resolution timer fired! Parameter: One-shot timer
Timer example complete
```
### 6. Periodic Timer (`clock_hrtimer_periodic_example`)
Demonstrates using a high-resolution timer for periodic callbacks.
**Usage:**
```
msh> clock_hrtimer_periodic_example
```
**Expected Output:**
```
=== High-Resolution Timer (Periodic) Example ===
Starting periodic timer (200ms period)...
Timer started successfully
Periodic timer tick #1
Periodic timer tick #2
Periodic timer tick #3
Periodic timer tick #4
Periodic timer tick #5
Timer stopped. Total ticks: 5
```
### 7. Performance Benchmark (`clock_benchmark_example`)
Measures the overhead of clock_time operations:
- `get_counter()` call overhead
- Time conversion overhead
**Usage:**
```
msh> clock_benchmark_example
```
### Run All Examples (`clock_time_examples_all`)
Runs all examples in sequence.
**Usage:**
```
msh> clock_time_examples_all
```
## Building the Examples
### Method 1: Include in BSP
Add to your BSP's `applications/SConscript`:
```python
src += Glob('../../examples/clock_time/*.c')
```
### Method 2: Manual Compilation
Copy `clock_time_example.c` to your BSP's `applications` directory and rebuild.
### Method 3: menuconfig
Some BSPs may include examples in menuconfig. Look for:
```
RT-Thread online packages --->
miscellaneous packages --->
[*] Enable clock_time examples
```
## Interpreting Results
### Delay Accuracy
The delay examples measure actual vs. target delays. Typical results:
- **Good**: Actual delay within 1-5% of target
- **Acceptable**: Actual delay within 10% of target
- **Poor**: Actual delay > 10% off target (may indicate timer issues)
Factors affecting accuracy:
- Timer resolution
- Interrupt latency
- System load
- Compiler optimizations
### Performance Benchmarks
Typical overhead values (depending on platform):
- `get_counter()`: 10-100 ns per call
- `cnt_to_us()`: 50-500 ns per call
Lower values are better. Very high values may indicate:
- Slow hardware timer access
- Cache misses
- Inefficient implementation
## Troubleshooting
### "RT_USING_CLOCK_TIME is not enabled"
Enable the clock_time subsystem in Kconfig:
```
Device Drivers --->
[*] Using unified clock_time subsystem
```
### "No clock_time device found"
No clock_time device has been registered. Options:
1. Enable an adapter (e.g., ARM Generic Timer, SysTick)
2. Implement a custom adapter for your hardware
3. The tick-based fallback should be available
### Timer callbacks not firing
If one-shot or periodic timers don't fire:
1. Check that your clock_time device supports `RT_CLOCK_TIME_CAP_CLOCKEVENT`
2. Verify the timer ISR calls `rt_clock_hrtimer_process()`
3. Check interrupt configuration and priority
4. Ensure timer interrupts are enabled
### Inaccurate delays
If delays are consistently off:
1. Verify timer frequency with `clock_time_info_example`
2. Check for interrupt latency issues
3. Ensure timer counter is actually counting
4. Consider using a higher frequency timer
## Advanced Usage
### Custom Timer Callbacks
```c
static void my_callback(void *parameter)
{
int *count = (int *)parameter;
(*count)++;
rt_kprintf("Callback executed %d times\n", *count);
}
void custom_timer_example(void)
{
struct rt_clock_hrtimer timer;
int count = 0;
rt_clock_hrtimer_init(&timer, "custom",
RT_TIMER_FLAG_PERIODIC,
my_callback,
&count);
unsigned long period = (unsigned long)rt_clock_time_ms_to_cnt(100);
rt_clock_hrtimer_start(&timer, period);
/* Let it run... */
rt_thread_mdelay(1000);
rt_clock_hrtimer_stop(&timer);
rt_clock_hrtimer_detach(&timer);
}
```
### Precision Timing
```c
void measure_function_time(void)
{
unsigned long start = (unsigned long)rt_clock_time_getcnt();
/* Function to measure */
my_function();
unsigned long end = (unsigned long)rt_clock_time_getcnt();
unsigned long delta = end - start;
rt_kprintf("Function took %u us\n",
(rt_uint32_t)rt_clock_time_cnt_to_us(delta));
}
```
## See Also
- [Clock Time Documentation](../../documentation/6.components/device-driver/clock_time.md)
- [Clock Time README](../../components/drivers/clock_time/README.md)
- [Adapter Examples](../../components/drivers/clock_time/adapters/)

View File

@@ -0,0 +1,303 @@
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-12-04 RT-Thread clock_time usage examples
*/
/**
* @file clock_time_example.c
* @brief Examples demonstrating the unified clock_time subsystem
*
* This file contains various examples showing how to use the clock_time
* subsystem for different time-related tasks.
*/
#include <rtthread.h>
#include <rtdevice.h>
#ifdef RT_USING_CLOCK_TIME
/**
* @brief Example 1: Basic time information
*
* Demonstrates how to get clock frequency, resolution, and current counter.
*/
static void clock_time_info_example(void)
{
rt_kprintf("\n=== Clock Time Info Example ===\n");
/* Get clock frequency */
rt_uint64_t freq = rt_clock_time_getfreq();
rt_kprintf("Clock frequency: %u Hz\n", (rt_uint32_t)freq);
/* Get clock resolution (in nanoseconds * RT_CLOCK_TIME_RESMUL) */
rt_uint64_t res = rt_clock_time_getres();
rt_kprintf("Clock resolution: %u ns (scaled)\n",
(rt_uint32_t)(res / RT_CLOCK_TIME_RESMUL));
/* Get current counter value */
rt_uint64_t cnt = rt_clock_time_getcnt();
rt_kprintf("Current counter: %u\n", (rt_uint32_t)cnt);
/* Get device info */
struct rt_clock_time_device *dev = rt_clock_time_get_default();
if (dev)
{
rt_kprintf("Device name: %s\n", dev->parent.parent.name);
rt_kprintf("Capabilities: ");
if (dev->caps & RT_CLOCK_TIME_CAP_CLOCKSOURCE)
rt_kprintf("CLOCKSOURCE ");
if (dev->caps & RT_CLOCK_TIME_CAP_CLOCKEVENT)
rt_kprintf("CLOCKEVENT ");
rt_kprintf("\n");
}
}
MSH_CMD_EXPORT(clock_time_info_example, Show clock time information);
/**
* @brief Example 2: Boottime tracking
*
* Demonstrates how to get system uptime in different formats.
*/
static void clock_boottime_example(void)
{
struct timespec ts;
struct timeval tv;
time_t t;
rt_kprintf("\n=== Boottime Example ===\n");
/* Get boottime in nanoseconds */
rt_clock_time_boottime_ns(&ts);
rt_kprintf("Boottime (ns): %d.%09d seconds\n",
(rt_uint32_t)ts.tv_sec, (rt_uint32_t)ts.tv_nsec);
/* Get boottime in microseconds */
rt_clock_time_boottime_us(&tv);
rt_kprintf("Boottime (us): %d.%06d seconds\n",
(rt_uint32_t)tv.tv_sec, (rt_uint32_t)tv.tv_usec);
/* Get boottime in seconds */
rt_clock_time_boottime_s(&t);
rt_kprintf("Boottime (s): %d seconds\n", (rt_uint32_t)t);
}
MSH_CMD_EXPORT(clock_boottime_example, Show system boottime);
/**
* @brief Example 3: Time conversion
*
* Demonstrates conversion between counter ticks and time units.
*/
static void clock_conversion_example(void)
{
rt_kprintf("\n=== Time Conversion Example ===\n");
/* Convert 1 second to counter ticks */
unsigned long cnt_1s = (unsigned long)rt_clock_time_ms_to_cnt(1000);
rt_kprintf("1 second = %u counter ticks\n", cnt_1s);
/* Convert back to time units */
rt_uint64_t ms = rt_clock_time_cnt_to_ms(cnt_1s);
rt_uint64_t us = rt_clock_time_cnt_to_us(cnt_1s);
rt_uint64_t ns = rt_clock_time_cnt_to_ns(cnt_1s);
rt_kprintf(" = %u ms\n", (rt_uint32_t)ms);
rt_kprintf(" = %u us\n", (rt_uint32_t)us);
rt_kprintf(" = %u ns\n", (rt_uint32_t)ns);
}
MSH_CMD_EXPORT(clock_conversion_example, Show time conversion);
/**
* @brief Example 4: High-precision delay
*
* Demonstrates using high-precision delay functions.
*/
static void clock_delay_example(void)
{
rt_kprintf("\n=== High-Precision Delay Example ===\n");
/* Measure delay accuracy */
unsigned long start_cnt = (unsigned long)rt_clock_time_getcnt();
rt_kprintf("Delaying 100 microseconds...\n");
rt_clock_udelay(100);
unsigned long end_cnt = (unsigned long)rt_clock_time_getcnt();
unsigned long delta_cnt = end_cnt - start_cnt;
rt_uint64_t actual_us = rt_clock_time_cnt_to_us(delta_cnt);
rt_kprintf("Actual delay: %u us (target: 100 us)\n", (rt_uint32_t)actual_us);
/* Millisecond delay */
start_cnt = (unsigned long)rt_clock_time_getcnt();
rt_kprintf("Delaying 10 milliseconds...\n");
rt_clock_mdelay(10);
end_cnt = (unsigned long)rt_clock_time_getcnt();
delta_cnt = end_cnt - start_cnt;
rt_uint64_t actual_ms = rt_clock_time_cnt_to_ms(delta_cnt);
rt_kprintf("Actual delay: %u ms (target: 10 ms)\n", (rt_uint32_t)actual_ms);
}
MSH_CMD_EXPORT(clock_delay_example, Demonstrate high-precision delays);
/**
* @brief Example 5: High-resolution timer (one-shot)
*
* Demonstrates using high-resolution timer for one-shot timeout.
*/
static void hrtimer_callback(void *parameter)
{
rt_kprintf("High-resolution timer fired! Parameter: %s\n",
(char *)parameter);
}
static void clock_hrtimer_oneshot_example(void)
{
struct rt_clock_hrtimer timer;
rt_kprintf("\n=== High-Resolution Timer (One-Shot) Example ===\n");
/* Initialize one-shot timer */
rt_clock_hrtimer_init(&timer, "oneshot_timer",
RT_TIMER_FLAG_ONE_SHOT,
hrtimer_callback,
(void *)"One-shot timer");
/* Start with 500ms delay */
unsigned long delay_cnt = (unsigned long)rt_clock_time_ms_to_cnt(500);
rt_kprintf("Starting timer for 500ms...\n");
rt_err_t result = rt_clock_hrtimer_start(&timer, delay_cnt);
if (result == RT_EOK)
{
rt_kprintf("Timer started successfully\n");
}
/* Let timer fire, then cleanup */
rt_thread_mdelay(600);
rt_clock_hrtimer_detach(&timer);
rt_kprintf("Timer example complete\n");
}
MSH_CMD_EXPORT(clock_hrtimer_oneshot_example, Demonstrate one-shot hrtimer);
/**
* @brief Example 6: High-resolution timer (periodic)
*
* Demonstrates using high-resolution timer for periodic callbacks.
*/
static volatile int periodic_count = 0;
static void periodic_callback(void *parameter)
{
periodic_count++;
rt_kprintf("Periodic timer tick #%d\n", periodic_count);
}
static void clock_hrtimer_periodic_example(void)
{
struct rt_clock_hrtimer timer;
rt_kprintf("\n=== High-Resolution Timer (Periodic) Example ===\n");
/* Initialize periodic timer */
rt_clock_hrtimer_init(&timer, "periodic_timer",
RT_TIMER_FLAG_PERIODIC,
periodic_callback,
RT_NULL);
/* Start with 200ms period */
unsigned long period_cnt = (unsigned long)rt_clock_time_ms_to_cnt(200);
rt_kprintf("Starting periodic timer (200ms period)...\n");
periodic_count = 0;
rt_err_t result = rt_clock_hrtimer_start(&timer, period_cnt);
if (result == RT_EOK)
{
rt_kprintf("Timer started successfully\n");
}
/* Let it tick 5 times */
rt_thread_mdelay(1100);
/* Stop and cleanup */
rt_clock_hrtimer_stop(&timer);
rt_clock_hrtimer_detach(&timer);
rt_kprintf("Timer stopped. Total ticks: %d\n", periodic_count);
}
MSH_CMD_EXPORT(clock_hrtimer_periodic_example, Demonstrate periodic hrtimer);
/**
* @brief Example 7: Benchmark overhead
*
* Measures the overhead of various clock_time operations.
*/
static void clock_benchmark_example(void)
{
const int iterations = 1000;
unsigned long start, end;
int i;
rt_kprintf("\n=== Clock Time Benchmark ===\n");
/* Benchmark get_counter() */
start = (unsigned long)rt_clock_time_getcnt();
for (i = 0; i < iterations; i++)
{
volatile unsigned long cnt = (unsigned long)rt_clock_time_getcnt();
(void)cnt;
}
end = (unsigned long)rt_clock_time_getcnt();
rt_kprintf("get_counter() x%d: %u ns per call\n",
iterations,
(rt_uint32_t)(rt_clock_time_cnt_to_ns(end - start) / iterations));
/* Benchmark time conversion */
start = (unsigned long)rt_clock_time_getcnt();
for (i = 0; i < iterations; i++)
{
volatile rt_uint64_t us = rt_clock_time_cnt_to_us(1000);
(void)us;
}
end = (unsigned long)rt_clock_time_getcnt();
rt_kprintf("cnt_to_us() x%d: %u ns per call\n",
iterations,
(rt_uint32_t)(rt_clock_time_cnt_to_ns(end - start) / iterations));
}
MSH_CMD_EXPORT(clock_benchmark_example, Benchmark clock_time operations);
/**
* @brief Run all examples
*/
static void clock_time_examples_all(void)
{
clock_time_info_example();
rt_thread_mdelay(100);
clock_boottime_example();
rt_thread_mdelay(100);
clock_conversion_example();
rt_thread_mdelay(100);
clock_delay_example();
rt_thread_mdelay(100);
clock_hrtimer_oneshot_example();
rt_thread_mdelay(100);
clock_hrtimer_periodic_example();
rt_thread_mdelay(100);
clock_benchmark_example();
}
MSH_CMD_EXPORT(clock_time_examples_all, Run all clock_time examples);
#else
#warning "RT_USING_CLOCK_TIME is not enabled. Examples will not be compiled."
#endif /* RT_USING_CLOCK_TIME */