libc: add arm64 libc function

Porting memory and string optimize functions from newlib and bionic

Signed-off-by: zhangyuan21 <zhangyuan21@xiaomi.com>
This commit is contained in:
zhangyuan21
2023-01-05 14:36:21 +08:00
committed by Xiang Xiao
parent f8f29c8147
commit fae5aef4fe
22 changed files with 3325 additions and 2 deletions

284
LICENSE
View File

@@ -490,6 +490,7 @@ libs/libc/machine/arm/armv7-a/gnu/arch_memcpy.S
libs/libc/machine/arm/armv7-a/gnu/arch_strlen.S
libs/libc/machine/arm/armv7-r/gnu/arch_memcpy.S
libs/libc/machine/arm/armv7-r/gnu/arch_strlen.S
libs/libc/machine/arm64/gnu/arch_strnlen.S
================================================
Copyright (c) 2013, Linaro Limited
@@ -739,6 +740,286 @@ libs/libc/machine/arm/armv8-m/gnu/arch_strlen.S
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_memchr.S
libs/libc/machine/arm64/gnu/arch_strchr.S
libs/libc/machine/arm64/gnu/arch_strchrnul.S
libs/libc/machine/arm64/gnu/arch_strrchr.S
================================================
Copyright (c) 2014, ARM Limited
All rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the company nor the names of its contributors
may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_memcmp.S
================================================
Copyright (c) 2018, Linaro Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Linaro Limited nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2017 ARM Ltd
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the company may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_memcpy.S
libs/libc/machine/arm64/gnu/arch_memmove.S
libs/libc/machine/arm64/gnu/arch_memset.S
================================================
Copyright (c) 2012-2013, Linaro Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Linaro Limited nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Copyright (c) 2015 ARM Ltd
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the company may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_strcmp.S
================================================
Copyright (c) 2012-2018, Linaro Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Linaro Limited nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_strcpy.S
================================================
Copyright (c) 2013, 2014, 2015 ARM Ltd.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Linaro nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_strlen.S
================================================
Copyright (c) 2013-2015, Linaro Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Linaro Limited nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm64/gnu/arch_strncmp.S
================================================
Copyright (c) 2013, 2018, Linaro Limited
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Linaro Limited nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/risc-v/gnu/arch_memset.S
libs/libc/machine/risc-v/gnu/arch_strcmp.S
================================================
@@ -5543,7 +5824,8 @@ drivers/mtd/at24xx.c
POSSIBILITY OF SUCH DAMAGE.
libs/libc/machine/arm/armv8-m
=============================
libs/libc/machine/arm64/gnu/arch_setjmp.S
==============================================
Copyright (c) 2011, 2012 ARM Ltd. All rights reserved.

View File

@@ -72,10 +72,18 @@ config LIBC_ARCH_STRCHR
bool
default n
config LIBC_ARCH_STRCHRNUL
bool
default n
config LIBC_ARCH_STRCMP
bool
default n
config LIBC_ARCH_STRNCMP
bool
default n
config LIBC_ARCH_STRCPY
bool
default n
@@ -100,6 +108,10 @@ config LIBC_ARCH_STRNLEN
bool
default n
config LIBC_ARCH_STRRCHR
bool
default n
config LIBC_ARCH_ELF
bool
default n
@@ -174,6 +186,9 @@ config LIBM_ARCH_TRUNCF
if ARCH_ARM
source "libs/libc/machine/arm/Kconfig"
endif
if ARCH_ARM64
source "libs/libc/machine/arm64/Kconfig"
endif
if ARCH_RISCV
source "libs/libc/machine/risc-v/Kconfig"
endif

View File

@@ -25,6 +25,9 @@ endif
ifeq ($(CONFIG_ARCH_ARM),y)
include $(TOPDIR)/libs/libc/machine/arm/Make.defs
endif
ifeq ($(CONFIG_ARCH_ARM64),y)
include $(TOPDIR)/libs/libc/machine/arm64/Make.defs
endif
ifeq ($(CONFIG_ARCH_RISCV),y)
include $(TOPDIR)/libs/libc/machine/risc-v/Make.defs
endif

View File

@@ -0,0 +1,106 @@
#
# For a description of the syntax of this configuration file,
# see the file kconfig-language.txt in the NuttX tools repository.
#
config ARM64_MEMCHR
bool "Enable optimized memchr() for ARM64"
default n
select LIBC_ARCH_MEMCHR
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific memchr() library function
config ARM64_MEMCMP
bool "Enable optimized memcmp() for ARM64"
select LIBC_ARCH_MEMCMP
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific memcmp() library function
config ARM64_MEMCPY
bool "Enable optimized memcpy() for ARM64"
select LIBC_ARCH_MEMCPY
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific memcpy() library function
config ARM64_MEMSET
bool "Enable optimized memset() for ARM64"
default n
select LIBC_ARCH_MEMSET
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific memset() library function
config ARM64_MEMMOVE
bool "Enable optimized memmove() for ARM64"
default n
select LIBC_ARCH_MEMMOVE
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific memmove() library function
config ARM64_STRCHR
bool "Enable optimized strchr() for ARM64"
default n
select LIBC_ARCH_STRCHR
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strchr() library function
config ARM64_STRCHRNUL
bool "Enable optimized strchrnul() for ARM64"
default n
select LIBC_ARCH_STRCHRNUL
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strchrnul() library function
config ARM64_STRCMP
bool "Enable optimized strcmp() for ARM64"
default n
select LIBC_ARCH_STRCMP
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strcmp() library function
config ARM64_STRCPY
bool "Enable optimized strcpy() for ARM64"
default n
select LIBC_ARCH_STRCPY
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strcpy() library function
config ARM64_STRLEN
bool "Enable optimized strlen() for ARM64"
default n
select LIBC_ARCH_STRLEN
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strlen() library function
config ARM64_STRNCMP
bool "Enable optimized strncmp() for ARM64"
default n
select LIBC_ARCH_STRNCMP
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strncmp() library function
config ARM64_STRNLEN
bool "Enable optimized strnlen() for ARM64"
default n
select LIBC_ARCH_STRNLEN
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strnlen() library function
config ARM64_STRRCHR
bool "Enable optimized strrchr() for ARM64"
default n
select LIBC_ARCH_STRRCHR
depends on ARCH_TOOLCHAIN_GNU
---help---
Enable optimized ARM64 specific strrchr() library function

View File

@@ -0,0 +1,83 @@
############################################################################
# libs/libc/machine/ARM64/Make.defs
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership. The
# ASF licenses this file to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance with the
# License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
############################################################################
ifeq ($(CONFIG_ARM64_MEMCHR),y)
ASRCS += arch_memchr.S
endif
ifeq ($(CONFIG_ARM64_MEMCMP),y)
ASRCS += arch_memcmp.S
endif
ifeq ($(CONFIG_ARM64_MEMCPY),y)
ASRCS += arch_memcpy.S
endif
ifeq ($(CONFIG_ARM64_MEMMOVE),y)
ASRCS += arch_memmove.S
endif
ifeq ($(CONFIG_ARM64_MEMSET),y)
ASRCS += arch_memset.S
endif
ifeq ($(CONFIG_ARM64_STRCHR),y)
ASRCS += arch_strchr.S
endif
ifeq ($(CONFIG_ARM64_STRCHRNUL),y)
ASRCS += arch_strchrnul.S
endif
ifeq ($(CONFIG_ARM64_STRCMP),y)
ASRCS += arch_strcmp.S
endif
ifeq ($(CONFIG_ARM64_STRCPY),y)
ASRCS += arch_strcpy.S
endif
ifeq ($(CONFIG_ARM64_STRLEN),y)
ASRCS += arch_strlen.S
endif
ifeq ($(CONFIG_ARM64_STRNCMP),y)
ASRCS += arch_strncmp.S
endif
ifeq ($(CONFIG_ARM64_STRNLEN),y)
ASRCS += arch_strnlen.S
endif
ifeq ($(CONFIG_ARM64_STRRCHR),y)
ASRCS += arch_strrchr.S
endif
ifeq ($(CONFIG_ARCH_SETJMP_H),y)
ASRCS += arch_setjmp.S
endif
ifeq ($(CONFIG_ARCH_TOOLCHAIN_GNU),y)
DEPPATH += --dep-path machine/arm64/gnu
VPATH += :machine/arm64/gnu
endif
DEPPATH += --dep-path machine/arm64
VPATH += :machine/arm64

View File

@@ -0,0 +1,173 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_memchr.S
*
* Copyright (c) 2014, ARM Limited
* All rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the company nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
* Neon Available.
*/
/* Arguments and results. */
#define srcin x0
#define chrin w1
#define cntin x2
#define result x0
#define src x3
#define tmp x4
#define wtmp2 w5
#define synd x6
#define soff x9
#define cntrem x10
#define vrepchr v0
#define vdata1 v1
#define vdata2 v2
#define vhas_chr1 v3
#define vhas_chr2 v4
#define vrepmask v5
#define vend v6
/*
* Core algorithm:
*
* For each 32-byte chunk we calculate a 64-bit syndrome value, with two bits
* per byte. For each tuple, bit 0 is set if the relevant byte matched the
* requested character and bit 1 is not used (faster than using a 32bit
* syndrome). Since the bits in the syndrome reflect exactly the order in which
* things occur in the original string, counting trailing zeros allows to
* identify exactly which byte has matched.
*/
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn memchr
/* Do not dereference srcin if no bytes to compare. */
cbz cntin, .Lzero_length
/*
* Magic constant 0x40100401 allows us to identify which lane matches
* the requested byte.
*/
mov wtmp2, #0x0401
movk wtmp2, #0x4010, lsl #16
dup vrepchr.16b, chrin
/* Work with aligned 32-byte chunks */
bic src, srcin, #31
dup vrepmask.4s, wtmp2
ands soff, srcin, #31
and cntrem, cntin, #31
b.eq .Lloop
/*
* Input string is not 32-byte aligned. We calculate the syndrome
* value for the aligned 32 bytes block containing the first bytes
* and mask the irrelevant part.
*/
ld1 {vdata1.16b, vdata2.16b}, [src], #32
sub tmp, soff, #32
adds cntin, cntin, tmp
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b
addp vend.16b, vhas_chr1.16b, vhas_chr2.16b /* 256->128 */
addp vend.16b, vend.16b, vend.16b /* 128->64 */
mov synd, vend.2d[0]
/* Clear the soff*2 lower bits */
lsl tmp, soff, #1
lsr synd, synd, tmp
lsl synd, synd, tmp
/* The first block can also be the last */
b.ls .Lmasklast
/* Have we found something already? */
cbnz synd, .Ltail
.Lloop:
ld1 {vdata1.16b, vdata2.16b}, [src], #32
subs cntin, cntin, #32
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
/* If we're out of data we finish regardless of the result */
b.ls .Lend
/* Use a fast check for the termination condition */
orr vend.16b, vhas_chr1.16b, vhas_chr2.16b
addp vend.2d, vend.2d, vend.2d
mov synd, vend.2d[0]
/* We're not out of data, loop if we haven't found the character */
cbz synd, .Lloop
.Lend:
/* Termination condition found, let's calculate the syndrome value */
and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b
addp vend.16b, vhas_chr1.16b, vhas_chr2.16b /* 256->128 */
addp vend.16b, vend.16b, vend.16b /* 128->64 */
mov synd, vend.2d[0]
/* Only do the clear for the last possible block */
b.hi .Ltail
.Lmasklast:
/* Clear the (32 - ((cntrem + soff) % 32)) * 2 upper bits */
add tmp, cntrem, soff
and tmp, tmp, #31
sub tmp, tmp, #32
neg tmp, tmp, lsl #1
lsl synd, synd, tmp
lsr synd, synd, tmp
.Ltail:
/* Count the trailing zeros using bit reversing */
rbit synd, synd
/* Compensate the last post-increment */
sub src, src, #32
/* Check that we have found a character */
cmp synd, #0
/* And count the leading zeros */
clz synd, synd
/* Compute the potential result */
add result, src, synd, lsr #1
/* Select result or NULL */
csel result, xzr, result, eq
ret
.Lzero_length:
mov result, #0
ret
.size memchr, . - memchr

View File

@@ -0,0 +1,196 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_memcmp.S
*
* Copyright (c) 2018 Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2017 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses.
*/
#define L(l) .L ## l
/* Parameters and result. */
#define src1 x0
#define src2 x1
#define limit x2
#define result w0
/* Internal variables. */
#define data1 x3
#define data1w w3
#define data1h x4
#define data2 x5
#define data2w w5
#define data2h x6
#define tmp1 x7
#define tmp2 x8
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn memcmp p2align=6
subs limit, limit, 8
b.lo L(less8)
ldr data1, [src1], 8
ldr data2, [src2], 8
cmp data1, data2
b.ne L(return)
subs limit, limit, 8
b.gt L(more16)
ldr data1, [src1, limit]
ldr data2, [src2, limit]
b L(return)
L(more16):
ldr data1, [src1], 8
ldr data2, [src2], 8
cmp data1, data2
bne L(return)
/* Jump directly to comparing the last 16 bytes for 32 byte (or less)
strings. */
subs limit, limit, 16
b.ls L(last_bytes)
/* We overlap loads between 0-32 bytes at either side of SRC1 when we
try to align, so limit it only to strings larger than 128 bytes. */
cmp limit, 96
b.ls L(loop16)
/* Align src1 and adjust src2 with bytes not yet done. */
and tmp1, src1, 15
add limit, limit, tmp1
sub src1, src1, tmp1
sub src2, src2, tmp1
/* Loop performing 16 bytes per iteration using aligned src1.
Limit is pre-decremented by 16 and must be larger than zero.
Exit if <= 16 bytes left to do or if the data is not equal. */
.p2align 4
L(loop16):
ldp data1, data1h, [src1], 16
ldp data2, data2h, [src2], 16
subs limit, limit, 16
ccmp data1, data2, 0, hi
ccmp data1h, data2h, 0, eq
b.eq L(loop16)
cmp data1, data2
bne L(return)
mov data1, data1h
mov data2, data2h
cmp data1, data2
bne L(return)
/* Compare last 1-16 bytes using unaligned access. */
L(last_bytes):
add src1, src1, limit
add src2, src2, limit
ldp data1, data1h, [src1]
ldp data2, data2h, [src2]
cmp data1, data2
bne L(return)
mov data1, data1h
mov data2, data2h
cmp data1, data2
/* Compare data bytes and set return value to 0, -1 or 1. */
L(return):
#ifndef __AARCH64EB__
rev data1, data1
rev data2, data2
#endif
cmp data1, data2
L(ret_eq):
cset result, ne
cneg result, result, lo
ret
.p2align 4
/* Compare up to 8 bytes. Limit is [-8..-1]. */
L(less8):
adds limit, limit, 4
b.lo L(less4)
ldr data1w, [src1], 4
ldr data2w, [src2], 4
cmp data1w, data2w
b.ne L(return)
sub limit, limit, 4
L(less4):
adds limit, limit, 4
beq L(ret_eq)
L(byte_loop):
ldrb data1w, [src1], 1
ldrb data2w, [src2], 1
subs limit, limit, 1
ccmp data1w, data2w, 0, ne /* NZCV = 0b0000. */
b.eq L(byte_loop)
sub result, data1w, data2w
ret
.size memcmp, . - memcmp

View File

@@ -0,0 +1,232 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_memcpy.S
*
* Copyright (c) 2012-2013, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2015 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses.
*
*/
#define dstin x0
#define src x1
#define count x2
#define dst x3
#define srcend x4
#define dstend x5
#define A_l x6
#define A_lw w6
#define A_h x7
#define A_hw w7
#define B_l x8
#define B_lw w8
#define B_h x9
#define C_l x10
#define C_h x11
#define D_l x12
#define D_h x13
#define E_l src
#define E_h count
#define F_l srcend
#define F_h dst
#define tmp1 x9
#define L(l) .L ## l
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* Copies are split into 3 main cases: small copies of up to 16 bytes,
medium copies of 17..96 bytes which are fully unrolled. Large copies
of more than 96 bytes align the destination and use an unrolled loop
processing 64 bytes per iteration.
Small and medium copies read all data before writing, allowing any
kind of overlap, and memmove tailcalls memcpy for these cases as
well as non-overlapping copies.
*/
def_fn memcpy p2align=6
prfm PLDL1KEEP, [src]
add srcend, src, count
add dstend, dstin, count
cmp count, 16
b.ls L(copy16)
cmp count, 96
b.hi L(copy_long)
/* Medium copies: 17..96 bytes. */
sub tmp1, count, 1
ldp A_l, A_h, [src]
tbnz tmp1, 6, L(copy96)
ldp D_l, D_h, [srcend, -16]
tbz tmp1, 5, 1f
ldp B_l, B_h, [src, 16]
ldp C_l, C_h, [srcend, -32]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstend, -32]
1:
stp A_l, A_h, [dstin]
stp D_l, D_h, [dstend, -16]
ret
.p2align 4
/* Small copies: 0..16 bytes. */
L(copy16):
cmp count, 8
b.lo 1f
ldr A_l, [src]
ldr A_h, [srcend, -8]
str A_l, [dstin]
str A_h, [dstend, -8]
ret
.p2align 4
1:
tbz count, 2, 1f
ldr A_lw, [src]
ldr A_hw, [srcend, -4]
str A_lw, [dstin]
str A_hw, [dstend, -4]
ret
/* Copy 0..3 bytes. Use a branchless sequence that copies the same
byte 3 times if count==1, or the 2nd byte twice if count==2. */
1:
cbz count, 2f
lsr tmp1, count, 1
ldrb A_lw, [src]
ldrb A_hw, [srcend, -1]
ldrb B_lw, [src, tmp1]
strb A_lw, [dstin]
strb B_lw, [dstin, tmp1]
strb A_hw, [dstend, -1]
2: ret
.p2align 4
/* Copy 64..96 bytes. Copy 64 bytes from the start and
32 bytes from the end. */
L(copy96):
ldp B_l, B_h, [src, 16]
ldp C_l, C_h, [src, 32]
ldp D_l, D_h, [src, 48]
ldp E_l, E_h, [srcend, -32]
ldp F_l, F_h, [srcend, -16]
stp A_l, A_h, [dstin]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstin, 32]
stp D_l, D_h, [dstin, 48]
stp E_l, E_h, [dstend, -32]
stp F_l, F_h, [dstend, -16]
ret
/* Align DST to 16 byte alignment so that we don't cross cache line
boundaries on both loads and stores. There are at least 96 bytes
to copy, so copy 16 bytes unaligned and then align. The loop
copies 64 bytes per iteration and prefetches one iteration ahead. */
.p2align 4
L(copy_long):
and tmp1, dstin, 15
bic dst, dstin, 15
ldp D_l, D_h, [src]
sub src, src, tmp1
add count, count, tmp1 /* Count is now 16 too large. */
ldp A_l, A_h, [src, 16]
stp D_l, D_h, [dstin]
ldp B_l, B_h, [src, 32]
ldp C_l, C_h, [src, 48]
ldp D_l, D_h, [src, 64]!
subs count, count, 128 + 16 /* Test and readjust count. */
b.ls 2f
1:
stp A_l, A_h, [dst, 16]
ldp A_l, A_h, [src, 16]
stp B_l, B_h, [dst, 32]
ldp B_l, B_h, [src, 32]
stp C_l, C_h, [dst, 48]
ldp C_l, C_h, [src, 48]
stp D_l, D_h, [dst, 64]!
ldp D_l, D_h, [src, 64]!
subs count, count, 64
b.hi 1b
/* Write the last full set of 64 bytes. The remainder is at most 64
bytes, so it is safe to always copy 64 bytes from the end even if
there is just 1 byte left. */
2:
ldp E_l, E_h, [srcend, -64]
stp A_l, A_h, [dst, 16]
ldp A_l, A_h, [srcend, -48]
stp B_l, B_h, [dst, 32]
ldp B_l, B_h, [srcend, -32]
stp C_l, C_h, [dst, 48]
ldp C_l, C_h, [srcend, -16]
stp D_l, D_h, [dst, 64]
stp E_l, E_h, [dstend, -64]
stp A_l, A_h, [dstend, -48]
stp B_l, B_h, [dstend, -32]
stp C_l, C_h, [dstend, -16]
ret
.size memcpy, . - memcpy

View File

@@ -0,0 +1,157 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_memmove.S
*
* Copyright (c) 2013, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2015 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses
*/
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* Parameters and result. */
#define dstin x0
#define src x1
#define count x2
#define srcend x3
#define dstend x4
#define tmp1 x5
#define A_l x6
#define A_h x7
#define B_l x8
#define B_h x9
#define C_l x10
#define C_h x11
#define D_l x12
#define D_h x13
#define E_l count
#define E_h tmp1
/* All memmoves up to 96 bytes are done by memcpy as it supports overlaps.
Larger backwards copies are also handled by memcpy. The only remaining
case is forward large copies. The destination is aligned, and an
unrolled loop processes 64 bytes per iteration.
*/
def_fn memmove, 6
sub tmp1, dstin, src
cmp count, 96
ccmp tmp1, count, 2, hi
b.hs memcpy
cbz tmp1, 3f
add dstend, dstin, count
add srcend, src, count
/* Align dstend to 16 byte alignment so that we don't cross cache line
boundaries on both loads and stores. There are at least 96 bytes
to copy, so copy 16 bytes unaligned and then align. The loop
copies 64 bytes per iteration and prefetches one iteration ahead. */
and tmp1, dstend, 15
ldp D_l, D_h, [srcend, -16]
sub srcend, srcend, tmp1
sub count, count, tmp1
ldp A_l, A_h, [srcend, -16]
stp D_l, D_h, [dstend, -16]
ldp B_l, B_h, [srcend, -32]
ldp C_l, C_h, [srcend, -48]
ldp D_l, D_h, [srcend, -64]!
sub dstend, dstend, tmp1
subs count, count, 128
b.ls 2f
nop
1:
stp A_l, A_h, [dstend, -16]
ldp A_l, A_h, [srcend, -16]
stp B_l, B_h, [dstend, -32]
ldp B_l, B_h, [srcend, -32]
stp C_l, C_h, [dstend, -48]
ldp C_l, C_h, [srcend, -48]
stp D_l, D_h, [dstend, -64]!
ldp D_l, D_h, [srcend, -64]!
subs count, count, 64
b.hi 1b
/* Write the last full set of 64 bytes. The remainder is at most 64
bytes, so it is safe to always copy 64 bytes from the start even if
there is just 1 byte left. */
2:
ldp E_l, E_h, [src, 48]
stp A_l, A_h, [dstend, -16]
ldp A_l, A_h, [src, 32]
stp B_l, B_h, [dstend, -32]
ldp B_l, B_h, [src, 16]
stp C_l, C_h, [dstend, -48]
ldp C_l, C_h, [src]
stp D_l, D_h, [dstend, -64]
stp E_l, E_h, [dstin, 48]
stp A_l, A_h, [dstin, 32]
stp B_l, B_h, [dstin, 16]
stp C_l, C_h, [dstin]
3: ret
.size memmove, . - memmove

View File

@@ -0,0 +1,242 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_memset.S
*
* Copyright (c) 2012-2013, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2015 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses
*
*/
#define dstin x0
#define val x1
#define valw w1
#define count x2
#define dst x3
#define dstend x4
#define tmp1 x5
#define tmp1w w5
#define tmp2 x6
#define tmp2w w6
#define zva_len x7
#define zva_lenw w7
#define L(l) .L ## l
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn memset p2align=6
dup v0.16B, valw
add dstend, dstin, count
cmp count, 96
b.hi L(set_long)
cmp count, 16
b.hs L(set_medium)
mov val, v0.D[0]
/* Set 0..15 bytes. */
tbz count, 3, 1f
str val, [dstin]
str val, [dstend, -8]
ret
nop
1: tbz count, 2, 2f
str valw, [dstin]
str valw, [dstend, -4]
ret
2: cbz count, 3f
strb valw, [dstin]
tbz count, 1, 3f
strh valw, [dstend, -2]
3: ret
/* Set 17..96 bytes. */
L(set_medium):
str q0, [dstin]
tbnz count, 6, L(set96)
str q0, [dstend, -16]
tbz count, 5, 1f
str q0, [dstin, 16]
str q0, [dstend, -32]
1: ret
.p2align 4
/* Set 64..96 bytes. Write 64 bytes from the start and
32 bytes from the end. */
L(set96):
str q0, [dstin, 16]
stp q0, q0, [dstin, 32]
stp q0, q0, [dstend, -32]
ret
.p2align 3
nop
L(set_long):
and valw, valw, 255
bic dst, dstin, 15
str q0, [dstin]
cmp count, 256
ccmp valw, 0, 0, cs
b.eq L(try_zva)
L(no_zva):
sub count, dstend, dst /* Count is 16 too large. */
sub dst, dst, 16 /* Dst is biased by -32. */
sub count, count, 64 + 16 /* Adjust count and bias for loop. */
1: stp q0, q0, [dst, 32]
stp q0, q0, [dst, 64]!
L(tail64):
subs count, count, 64
b.hi 1b
2: stp q0, q0, [dstend, -64]
stp q0, q0, [dstend, -32]
ret
.p2align 3
L(try_zva):
mrs tmp1, dczid_el0
tbnz tmp1w, 4, L(no_zva)
and tmp1w, tmp1w, 15
cmp tmp1w, 4 /* ZVA size is 64 bytes. */
b.ne L(zva_128)
/* Write the first and last 64 byte aligned block using stp rather
than using DC ZVA. This is faster on some cores.
*/
L(zva_64):
str q0, [dst, 16]
stp q0, q0, [dst, 32]
bic dst, dst, 63
stp q0, q0, [dst, 64]
stp q0, q0, [dst, 96]
sub count, dstend, dst /* Count is now 128 too large. */
sub count, count, 128+64+64 /* Adjust count and bias for loop. */
add dst, dst, 128
nop
1: dc zva, dst
add dst, dst, 64
subs count, count, 64
b.hi 1b
stp q0, q0, [dst, 0]
stp q0, q0, [dst, 32]
stp q0, q0, [dstend, -64]
stp q0, q0, [dstend, -32]
ret
.p2align 3
L(zva_128):
cmp tmp1w, 5 /* ZVA size is 128 bytes. */
b.ne L(zva_other)
str q0, [dst, 16]
stp q0, q0, [dst, 32]
stp q0, q0, [dst, 64]
stp q0, q0, [dst, 96]
bic dst, dst, 127
sub count, dstend, dst /* Count is now 128 too large. */
sub count, count, 128+128 /* Adjust count and bias for loop. */
add dst, dst, 128
1: dc zva, dst
add dst, dst, 128
subs count, count, 128
b.hi 1b
stp q0, q0, [dstend, -128]
stp q0, q0, [dstend, -96]
stp q0, q0, [dstend, -64]
stp q0, q0, [dstend, -32]
ret
L(zva_other):
mov tmp2w, 4
lsl zva_lenw, tmp2w, tmp1w
add tmp1, zva_len, 64 /* Max alignment bytes written. */
cmp count, tmp1
blo L(no_zva)
sub tmp2, zva_len, 1
add tmp1, dst, zva_len
add dst, dst, 16
subs count, tmp1, dst /* Actual alignment bytes to write. */
bic tmp1, tmp1, tmp2 /* Aligned dc zva start address. */
beq 2f
1: stp q0, q0, [dst], 64
stp q0, q0, [dst, -32]
subs count, count, 64
b.hi 1b
2: mov dst, tmp1
sub count, dstend, tmp1 /* Remaining bytes to write. */
subs count, count, zva_len
b.lo 4f
3: dc zva, dst
add dst, dst, zva_len
subs count, count, zva_len
b.hs 3b
4: add count, count, zva_len
sub dst, dst, 32 /* Bias dst for tail loop. */
b L(tail64)
.size memset, . - memset

View File

@@ -0,0 +1,77 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_setjmp.S
*
* Copyright (c) 2011, 2012 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#define GPR_LAYOUT \
REG_PAIR (x19, x20, 0); \
REG_PAIR (x21, x22, 16); \
REG_PAIR (x23, x24, 32); \
REG_PAIR (x25, x26, 48); \
REG_PAIR (x27, x28, 64); \
REG_PAIR (x29, x30, 80); \
REG_ONE (x16, 96)
#define FPR_LAYOUT \
REG_PAIR ( d8, d9, 112); \
REG_PAIR (d10, d11, 128); \
REG_PAIR (d12, d13, 144); \
REG_PAIR (d14, d15, 160);
// int setjmp (jmp_buf)
.global setjmp
.type setjmp, %function
setjmp:
mov x16, sp
#define REG_PAIR(REG1, REG2, OFFS) stp REG1, REG2, [x0, OFFS]
#define REG_ONE(REG1, OFFS) str REG1, [x0, OFFS]
GPR_LAYOUT
FPR_LAYOUT
#undef REG_PAIR
#undef REG_ONE
mov w0, #0
ret
.size setjmp, .-setjmp
// void longjmp (jmp_buf, int) __attribute__ ((noreturn))
.global longjmp
.type longjmp, %function
longjmp:
#define REG_PAIR(REG1, REG2, OFFS) ldp REG1, REG2, [x0, OFFS]
#define REG_ONE(REG1, OFFS) ldr REG1, [x0, OFFS]
GPR_LAYOUT
FPR_LAYOUT
#undef REG_PAIR
#undef REG_ONE
mov sp, x16
cmp w1, #0
cinc w0, w1, eq
// use br not ret, as ret is guaranteed to mispredict
br x30
.size longjmp, .-longjmp

View File

@@ -0,0 +1,161 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strchr.S
*
* Copyright (c) 2014, ARM Limited
* All rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the company nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
* Neon Available.
*/
/* Arguments and results. */
#define srcin x0
#define chrin w1
#define result x0
#define src x2
#define tmp1 x3
#define wtmp2 w4
#define tmp3 x5
#define vrepchr v0
#define vdata1 v1
#define vdata2 v2
#define vhas_nul1 v3
#define vhas_nul2 v4
#define vhas_chr1 v5
#define vhas_chr2 v6
#define vrepmask_0 v7
#define vrepmask_c v16
#define vend1 v17
#define vend2 v18
/* Core algorithm.
For each 32-byte hunk we calculate a 64-bit syndrome value, with
two bits per byte (LSB is always in bits 0 and 1, for both big
and little-endian systems). For each tuple, bit 0 is set iff
the relevant byte matched the requested character; bit 1 is set
iff the relevant byte matched the NUL end of string (we trigger
off bit0 for the special case of looking for NUL). Since the bits
in the syndrome reflect exactly the order in which things occur
in the original string a count_trailing_zeros() operation will
identify exactly which byte is causing the termination, and why. */
/* Locals and temporaries. */
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn strchr
/* Magic constant 0x40100401 to allow us to identify which lane
matches the requested byte. Magic constant 0x80200802 used
similarly for NUL termination. */
mov wtmp2, #0x0401
movk wtmp2, #0x4010, lsl #16
dup vrepchr.16b, chrin
bic src, srcin, #31 /* Work with aligned 32-byte hunks. */
dup vrepmask_c.4s, wtmp2
ands tmp1, srcin, #31
add vrepmask_0.4s, vrepmask_c.4s, vrepmask_c.4s /* equiv: lsl #1 */
b.eq .Lloop
/* Input string is not 32-byte aligned. Rather than forcing
the padding bytes to a safe value, we calculate the syndrome
for all the bytes, but then mask off those bits of the
syndrome that are related to the padding. */
ld1 {vdata1.16b, vdata2.16b}, [src], #32
neg tmp1, tmp1
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
orr vend1.16b, vhas_nul1.16b, vhas_chr1.16b
orr vend2.16b, vhas_nul2.16b, vhas_chr2.16b
lsl tmp1, tmp1, #1
addp vend1.16b, vend1.16b, vend2.16b // 256->128
mov tmp3, #~0
addp vend1.16b, vend1.16b, vend2.16b // 128->64
lsr tmp1, tmp3, tmp1
mov tmp3, vend1.2d[0]
bic tmp1, tmp3, tmp1 // Mask padding bits.
cbnz tmp1, .Ltail
.Lloop:
ld1 {vdata1.16b, vdata2.16b}, [src], #32
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
/* Use a fast check for the termination condition. */
orr vend1.16b, vhas_nul1.16b, vhas_chr1.16b
orr vend2.16b, vhas_nul2.16b, vhas_chr2.16b
orr vend1.16b, vend1.16b, vend2.16b
addp vend1.2d, vend1.2d, vend1.2d
mov tmp1, vend1.2d[0]
cbz tmp1, .Lloop
/* Termination condition found. Now need to establish exactly why
we terminated. */
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
orr vend1.16b, vhas_nul1.16b, vhas_chr1.16b
orr vend2.16b, vhas_nul2.16b, vhas_chr2.16b
addp vend1.16b, vend1.16b, vend2.16b // 256->128
addp vend1.16b, vend1.16b, vend2.16b // 128->64
mov tmp1, vend1.2d[0]
.Ltail:
/* Count the trailing zeros, by bit reversing... */
rbit tmp1, tmp1
/* Re-bias source. */
sub src, src, #32
clz tmp1, tmp1 /* And counting the leading zeros. */
/* Tmp1 is even if the target charager was found first. Otherwise
we've found the end of string and we weren't looking for NUL. */
tst tmp1, #1
add result, src, tmp1, lsr #1
csel result, result, xzr, eq
ret
.size strchr, . - strchr

View File

@@ -0,0 +1,146 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strchrnul.S
*
* Copyright (c) 2014, ARM Limited
* All rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the company nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
* Neon Available.
*/
/* Arguments and results. */
#define srcin x0
#define chrin w1
#define result x0
#define src x2
#define tmp1 x3
#define wtmp2 w4
#define tmp3 x5
#define vrepchr v0
#define vdata1 v1
#define vdata2 v2
#define vhas_nul1 v3
#define vhas_nul2 v4
#define vhas_chr1 v5
#define vhas_chr2 v6
#define vrepmask v7
#define vend1 v16
/* Core algorithm.
For each 32-byte hunk we calculate a 64-bit syndrome value, with
two bits per byte (LSB is always in bits 0 and 1, for both big
and little-endian systems). For each tuple, bit 0 is set iff
the relevant byte matched the requested character or nul. Since the
bits in the syndrome reflect exactly the order in which things occur
in the original string a count_trailing_zeros() operation will
identify exactly which byte is causing the termination. */
/* Locals and temporaries. */
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn strchrnul
/* Magic constant 0x40100401 to allow us to identify which lane
matches the termination condition. */
mov wtmp2, #0x0401
movk wtmp2, #0x4010, lsl #16
dup vrepchr.16b, chrin
bic src, srcin, #31 /* Work with aligned 32-byte hunks. */
dup vrepmask.4s, wtmp2
ands tmp1, srcin, #31
b.eq .Lloop
/* Input string is not 32-byte aligned. Rather than forcing
the padding bytes to a safe value, we calculate the syndrome
for all the bytes, but then mask off those bits of the
syndrome that are related to the padding. */
ld1 {vdata1.16b, vdata2.16b}, [src], #32
neg tmp1, tmp1
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
orr vhas_chr1.16b, vhas_chr1.16b, vhas_nul1.16b
orr vhas_chr2.16b, vhas_chr2.16b, vhas_nul2.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b
lsl tmp1, tmp1, #1
addp vend1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
mov tmp3, #~0
addp vend1.16b, vend1.16b, vend1.16b // 128->64
lsr tmp1, tmp3, tmp1
mov tmp3, vend1.2d[0]
bic tmp1, tmp3, tmp1 // Mask padding bits.
cbnz tmp1, .Ltail
.Lloop:
ld1 {vdata1.16b, vdata2.16b}, [src], #32
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
/* Use a fast check for the termination condition. */
orr vhas_chr1.16b, vhas_nul1.16b, vhas_chr1.16b
orr vhas_chr2.16b, vhas_nul2.16b, vhas_chr2.16b
orr vend1.16b, vhas_chr1.16b, vhas_chr2.16b
addp vend1.2d, vend1.2d, vend1.2d
mov tmp1, vend1.2d[0]
cbz tmp1, .Lloop
/* Termination condition found. Now need to establish exactly why
we terminated. */
and vhas_chr1.16b, vhas_chr1.16b, vrepmask.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask.16b
addp vend1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
addp vend1.16b, vend1.16b, vend1.16b // 128->64
mov tmp1, vend1.2d[0]
.Ltail:
/* Count the trailing zeros, by bit reversing... */
rbit tmp1, tmp1
/* Re-bias source. */
sub src, src, #32
clz tmp1, tmp1 /* ... and counting the leading zeros. */
/* tmp1 is twice the offset into the fragment. */
add result, src, tmp1, lsr #1
ret
.size strchrnul, . - strchrnul

View File

@@ -0,0 +1,205 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strcmp.S
*
* Copyright (c) 2012-2018, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
*/
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
#define L(label) .L ## label
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
/* Parameters and result. */
#define src1 x0
#define src2 x1
#define result x0
/* Internal variables. */
#define data1 x2
#define data1w w2
#define data2 x3
#define data2w w3
#define has_nul x4
#define diff x5
#define syndrome x6
#define tmp1 x7
#define tmp2 x8
#define tmp3 x9
#define zeroones x10
#define pos x11
/* Start of performance-critical section -- one 64B cache line. */
def_fn strcmp p2align=6
eor tmp1, src1, src2
mov zeroones, #REP8_01
tst tmp1, #7
b.ne L(misaligned8)
ands tmp1, src1, #7
b.ne L(mutual_align)
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. */
L(loop_aligned):
ldr data1, [src1], #8
ldr data2, [src2], #8
L(start_realigned):
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
orr syndrome, diff, has_nul
cbz syndrome, L(loop_aligned)
/* End of performance-critical section -- one 64B cache line. */
L(end):
#ifndef __AARCH64EB__
rev syndrome, syndrome
rev data1, data1
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
clz pos, syndrome
rev data2, data2
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#else
/* For big-endian we cannot use the trick with the syndrome value
as carry-propagation can corrupt the upper bits if the trailing
bytes in the string contain 0x01. */
/* However, if there is no NUL byte in the dword, we can generate
the result directly. We can't just subtract the bytes as the
MSB might be significant. */
cbnz has_nul, 1f
cmp data1, data2
cset result, ne
cneg result, result, lo
ret
1:
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
rev tmp3, data1
sub tmp1, tmp3, zeroones
orr tmp2, tmp3, #REP8_7f
bic has_nul, tmp1, tmp2
rev has_nul, has_nul
orr syndrome, diff, has_nul
clz pos, syndrome
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#endif
L(mutual_align):
/* Sources are mutually aligned, but are not currently at an
alignment boundary. Round down the addresses and then mask off
the bytes that preceed the start point. */
bic src1, src1, #7
bic src2, src2, #7
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
ldr data1, [src1], #8
neg tmp1, tmp1 /* Bits to alignment -64. */
ldr data2, [src2], #8
mov tmp2, #~0
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#endif
orr data1, data1, tmp2
orr data2, data2, tmp2
b L(start_realigned)
L(misaligned8):
/* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
checking to make sure that we don't access beyond page boundary in
SRC2. */
tst src1, #7
b.eq L(loop_misaligned)
L(do_misaligned):
ldrb data1w, [src1], #1
ldrb data2w, [src2], #1
cmp data1w, #1
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.ne L(done)
tst src1, #7
b.ne L(do_misaligned)
L(loop_misaligned):
/* Test if we are within the last dword of the end of a 4K page. If
yes then jump back to the misaligned loop to copy a byte at a time. */
and tmp1, src2, #0xff8
eor tmp1, tmp1, #0xff8
cbz tmp1, L(do_misaligned)
ldr data1, [src1], #8
ldr data2, [src2], #8
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
orr syndrome, diff, has_nul
cbz syndrome, L(loop_misaligned)
b L(end)
L(done):
sub result, data1, data2
ret
.size strcmp, .-strcmp

View File

@@ -0,0 +1,338 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strcpy.S
*
* Copyright (c) 2013, 2014, 2015 ARM Ltd.
* All rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the company nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses, min page size 4k.
*/
/* To build as stpcpy, define BUILD_STPCPY before compiling this file.
To test the page crossing code path more thoroughly, compile with
-DSTRCPY_TEST_PAGE_CROSS - this will force all copies through the slower
entry path. This option is not intended for production use. */
/* Arguments and results. */
#define dstin x0
#define srcin x1
/* Locals and temporaries. */
#define src x2
#define dst x3
#define data1 x4
#define data1w w4
#define data2 x5
#define data2w w5
#define has_nul1 x6
#define has_nul2 x7
#define tmp1 x8
#define tmp2 x9
#define tmp3 x10
#define tmp4 x11
#define zeroones x12
#define data1a x13
#define data2a x14
#define pos x15
#define len x16
#define to_align x17
#ifdef BUILD_STPCPY
#define STRCPY stpcpy
#else
#define STRCPY strcpy
#endif
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. */
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
/* AArch64 systems have a minimum page size of 4k. We can do a quick
page size check for crossing this boundary on entry and if we
do not, then we can short-circuit much of the entry code. We
expect early page-crossing strings to be rare (probability of
16/MIN_PAGE_SIZE ~= 0.4%), so the branch should be quite
predictable, even with random strings.
We don't bother checking for larger page sizes, the cost of setting
up the correct page size is just not worth the extra gain from
a small reduction in the cases taking the slow path. Note that
we only care about whether the first fetch, which may be
misaligned, crosses a page boundary - after that we move to aligned
fetches for the remainder of the string. */
#ifdef STRCPY_TEST_PAGE_CROSS
/* Make everything that isn't Qword aligned look like a page cross. */
#define MIN_PAGE_P2 4
#else
#define MIN_PAGE_P2 12
#endif
#define MIN_PAGE_SIZE (1 << MIN_PAGE_P2)
def_fn STRCPY p2align=6
/* For moderately short strings, the fastest way to do the copy is to
calculate the length of the string in the same way as strlen, then
essentially do a memcpy of the result. This avoids the need for
multiple byte copies and further means that by the time we
reach the bulk copy loop we know we can always use DWord
accesses. We expect strcpy to rarely be called repeatedly
with the same source string, so branch prediction is likely to
always be difficult - we mitigate against this by preferring
conditional select operations over branches whenever this is
feasible. */
and tmp2, srcin, #(MIN_PAGE_SIZE - 1)
mov zeroones, #REP8_01
and to_align, srcin, #15
cmp tmp2, #(MIN_PAGE_SIZE - 16)
neg tmp1, to_align
/* The first fetch will straddle a (possible) page boundary iff
srcin + 15 causes bit[MIN_PAGE_P2] to change value. A 16-byte
aligned string will never fail the page align check, so will
always take the fast path. */
b.gt .Lpage_cross
.Lpage_cross_ok:
ldp data1, data2, [srcin]
#ifdef __AARCH64EB__
/* Because we expect the end to be found within 16 characters
(profiling shows this is the most common case), it's worth
swapping the bytes now to save having to recalculate the
termination syndrome later. We preserve data1 and data2
so that we can re-use the values later on. */
rev tmp2, data1
sub tmp1, tmp2, zeroones
orr tmp2, tmp2, #REP8_7f
bics has_nul1, tmp1, tmp2
b.ne .Lfp_le8
rev tmp4, data2
sub tmp3, tmp4, zeroones
orr tmp4, tmp4, #REP8_7f
#else
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
bics has_nul1, tmp1, tmp2
b.ne .Lfp_le8
sub tmp3, data2, zeroones
orr tmp4, data2, #REP8_7f
#endif
bics has_nul2, tmp3, tmp4
b.eq .Lbulk_entry
/* The string is short (<=16 bytes). We don't know exactly how
short though, yet. Work out the exact length so that we can
quickly select the optimal copy strategy. */
.Lfp_gt8:
rev has_nul2, has_nul2
clz pos, has_nul2
mov tmp2, #56
add dst, dstin, pos, lsr #3 /* Bits to bytes. */
sub pos, tmp2, pos
#ifdef __AARCH64EB__
lsr data2, data2, pos
#else
lsl data2, data2, pos
#endif
str data2, [dst, #1]
str data1, [dstin]
#ifdef BUILD_STPCPY
add dstin, dst, #8
#endif
ret
.Lfp_le8:
rev has_nul1, has_nul1
clz pos, has_nul1
add dst, dstin, pos, lsr #3 /* Bits to bytes. */
subs tmp2, pos, #24 /* Pos in bits. */
b.lt .Lfp_lt4
#ifdef __AARCH64EB__
mov tmp2, #56
sub pos, tmp2, pos
lsr data2, data1, pos
lsr data1, data1, #32
#else
lsr data2, data1, tmp2
#endif
/* 4->7 bytes to copy. */
str data2w, [dst, #-3]
str data1w, [dstin]
#ifdef BUILD_STPCPY
mov dstin, dst
#endif
ret
.Lfp_lt4:
cbz pos, .Lfp_lt2
/* 2->3 bytes to copy. */
#ifdef __AARCH64EB__
lsr data1, data1, #48
#endif
strh data1w, [dstin]
/* Fall-through, one byte (max) to go. */
.Lfp_lt2:
/* Null-terminated string. Last character must be zero! */
strb wzr, [dst]
#ifdef BUILD_STPCPY
mov dstin, dst
#endif
ret
.p2align 6
/* Aligning here ensures that the entry code and main loop all lies
within one 64-byte cache line. */
.Lbulk_entry:
sub to_align, to_align, #16
stp data1, data2, [dstin]
sub src, srcin, to_align
sub dst, dstin, to_align
b .Lentry_no_page_cross
/* The inner loop deals with two Dwords at a time. This has a
slightly higher start-up cost, but we should win quite quickly,
especially on cores with a high number of issue slots per
cycle, as we get much better parallelism out of the operations. */
.Lmain_loop:
stp data1, data2, [dst], #16
.Lentry_no_page_cross:
ldp data1, data2, [src], #16
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, #REP8_7f
bic has_nul1, tmp1, tmp2
bics has_nul2, tmp3, tmp4
ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */
b.eq .Lmain_loop
/* Since we know we are copying at least 16 bytes, the fastest way
to deal with the tail is to determine the location of the
trailing NUL, then (re)copy the 16 bytes leading up to that. */
cmp has_nul1, #0
#ifdef __AARCH64EB__
/* For big-endian, carry propagation (if the final byte in the
string is 0x01) means we cannot use has_nul directly. The
easiest way to get the correct byte is to byte-swap the data
and calculate the syndrome a second time. */
csel data1, data1, data2, ne
rev data1, data1
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
bic has_nul1, tmp1, tmp2
#else
csel has_nul1, has_nul1, has_nul2, ne
#endif
rev has_nul1, has_nul1
clz pos, has_nul1
add tmp1, pos, #72
add pos, pos, #8
csel pos, pos, tmp1, ne
add src, src, pos, lsr #3
add dst, dst, pos, lsr #3
ldp data1, data2, [src, #-32]
stp data1, data2, [dst, #-16]
#ifdef BUILD_STPCPY
sub dstin, dst, #1
#endif
ret
.Lpage_cross:
bic src, srcin, #15
/* Start by loading two words at [srcin & ~15], then forcing the
bytes that precede srcin to 0xff. This means they never look
like termination bytes. */
ldp data1, data2, [src]
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
tst to_align, #7
csetm tmp2, ne
#ifdef __AARCH64EB__
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#else
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
#endif
orr data1, data1, tmp2
orr data2a, data2, tmp2
cmp to_align, #8
csinv data1, data1, xzr, lt
csel data2, data2, data2a, lt
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, #REP8_7f
bic has_nul1, tmp1, tmp2
bics has_nul2, tmp3, tmp4
ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */
b.eq .Lpage_cross_ok
/* We now need to make data1 and data2 look like they've been
loaded directly from srcin. Do a rotate on the 128-bit value. */
lsl tmp1, to_align, #3 /* Bytes->bits. */
neg tmp2, to_align, lsl #3
#ifdef __AARCH64EB__
lsl data1a, data1, tmp1
lsr tmp4, data2, tmp2
lsl data2, data2, tmp1
orr tmp4, tmp4, data1a
cmp to_align, #8
csel data1, tmp4, data2, lt
rev tmp2, data1
rev tmp4, data2
sub tmp1, tmp2, zeroones
orr tmp2, tmp2, #REP8_7f
sub tmp3, tmp4, zeroones
orr tmp4, tmp4, #REP8_7f
#else
lsr data1a, data1, tmp1
lsl tmp4, data2, tmp2
lsr data2, data2, tmp1
orr tmp4, tmp4, data1a
cmp to_align, #8
csel data1, tmp4, data2, lt
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, #REP8_7f
#endif
bic has_nul1, tmp1, tmp2
cbnz has_nul1, .Lfp_le8
bic has_nul2, tmp3, tmp4
b .Lfp_gt8
.size STRCPY, . - STRCPY

View File

@@ -0,0 +1,242 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strlen.S
*
* Copyright (c) 2013-2015, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64, unaligned accesses, min page size 4k.
*/
/* To test the page crossing code path more thoroughly, compile with
-DTEST_PAGE_CROSS - this will force all calls through the slower
entry path. This option is not intended for production use. */
/* Arguments and results. */
#define srcin x0
#define len x0
/* Locals and temporaries. */
#define src x1
#define data1 x2
#define data2 x3
#define has_nul1 x4
#define has_nul2 x5
#define tmp1 x4
#define tmp2 x5
#define tmp3 x6
#define tmp4 x7
#define zeroones x8
#define L(l) .L ## l
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. A faster check
(X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives
false hits for characters 129..255. */
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
#ifdef TEST_PAGE_CROSS
# define MIN_PAGE_SIZE 15
#else
# define MIN_PAGE_SIZE 4096
#endif
/* Since strings are short on average, we check the first 16 bytes
of the string for a NUL character. In order to do an unaligned ldp
safely we have to do a page cross check first. If there is a NUL
byte we calculate the length from the 2 8-byte words using
conditional select to reduce branch mispredictions (it is unlikely
strlen will be repeatedly called on strings with the same length).
If the string is longer than 16 bytes, we align src so don't need
further page cross checks, and process 32 bytes per iteration
using the fast NUL check. If we encounter non-ASCII characters,
fallback to a second loop using the full NUL check.
If the page cross check fails, we read 16 bytes from an aligned
address, remove any characters before the string, and continue
in the main loop using aligned loads. Since strings crossing a
page in the first 16 bytes are rare (probability of
16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
AArch64 systems have a minimum page size of 4k. We don't bother
checking for larger page sizes - the cost of setting up the correct
page size is just not worth the extra gain from a small reduction in
the cases taking the slow path. Note that we only care about
whether the first fetch, which may be misaligned, crosses a page
boundary. */
def_fn strlen p2align=6
and tmp1, srcin, MIN_PAGE_SIZE - 1
mov zeroones, REP8_01
cmp tmp1, MIN_PAGE_SIZE - 16
b.gt L(page_cross)
ldp data1, data2, [srcin]
#ifdef __AARCH64EB__
/* For big-endian, carry propagation (if the final byte in the
string is 0x01) means we cannot use has_nul1/2 directly.
Since we expect strings to be small and early-exit,
byte-swap the data now so has_null1/2 will be correct. */
rev data1, data1
rev data2, data2
#endif
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, REP8_7f
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
beq L(main_loop_entry)
/* Enter with C = has_nul1 == 0. */
csel has_nul1, has_nul1, has_nul2, cc
mov len, 8
rev has_nul1, has_nul1
clz tmp1, has_nul1
csel len, xzr, len, cc
add len, len, tmp1, lsr 3
ret
/* The inner loop processes 32 bytes per iteration and uses the fast
NUL check. If we encounter non-ASCII characters, use a second
loop with the accurate NUL check. */
.p2align 4
L(main_loop_entry):
bic src, srcin, 15
sub src, src, 16
L(main_loop):
ldp data1, data2, [src, 32]!
.Lpage_cross_entry:
sub tmp1, data1, zeroones
sub tmp3, data2, zeroones
orr tmp2, tmp1, tmp3
tst tmp2, zeroones, lsl 7
bne 1f
ldp data1, data2, [src, 16]
sub tmp1, data1, zeroones
sub tmp3, data2, zeroones
orr tmp2, tmp1, tmp3
tst tmp2, zeroones, lsl 7
beq L(main_loop)
add src, src, 16
1:
/* The fast check failed, so do the slower, accurate NUL check. */
orr tmp2, data1, REP8_7f
orr tmp4, data2, REP8_7f
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
beq L(nonascii_loop)
/* Enter with C = has_nul1 == 0. */
L(tail):
#ifdef __AARCH64EB__
/* For big-endian, carry propagation (if the final byte in the
string is 0x01) means we cannot use has_nul1/2 directly. The
easiest way to get the correct byte is to byte-swap the data
and calculate the syndrome a second time. */
csel data1, data1, data2, cc
rev data1, data1
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
bic has_nul1, tmp1, tmp2
#else
csel has_nul1, has_nul1, has_nul2, cc
#endif
sub len, src, srcin
rev has_nul1, has_nul1
add tmp2, len, 8
clz tmp1, has_nul1
csel len, len, tmp2, cc
add len, len, tmp1, lsr 3
ret
L(nonascii_loop):
ldp data1, data2, [src, 16]!
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, REP8_7f
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
bne L(tail)
ldp data1, data2, [src, 16]!
sub tmp1, data1, zeroones
orr tmp2, data1, REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, REP8_7f
bics has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
ccmp has_nul2, 0, 0, eq
beq L(nonascii_loop)
b L(tail)
/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
srcin to 0x7f, so we ignore any NUL bytes before the string.
Then continue in the aligned loop. */
L(page_cross):
bic src, srcin, 15
ldp data1, data2, [src]
lsl tmp1, srcin, 3
mov tmp4, -1
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsr tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsl tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
#endif
orr tmp1, tmp1, REP8_80
orn data1, data1, tmp1
orn tmp2, data2, tmp1
tst srcin, 8
csel data1, data1, tmp4, eq
csel data2, data2, tmp2, eq
b L(page_cross_entry)
.size strlen, . - strlen

View File

@@ -0,0 +1,294 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strncmp.S
*
* Copyright (c) 2013, 2018, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
*/
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
/* Parameters and result. */
#define src1 x0
#define src2 x1
#define limit x2
#define result x0
/* Internal variables. */
#define data1 x3
#define data1w w3
#define data2 x4
#define data2w w4
#define has_nul x5
#define diff x6
#define syndrome x7
#define tmp1 x8
#define tmp2 x9
#define tmp3 x10
#define zeroones x11
#define pos x12
#define limit_wd x13
#define mask x14
#define endloop x15
#define count mask
.text
.p2align 6
.rep 7
nop /* Pad so that the loop below fits a cache line. */
.endr
def_fn strncmp
cbz limit, .Lret0
eor tmp1, src1, src2
mov zeroones, #REP8_01
tst tmp1, #7
and count, src1, #7
b.ne .Lmisaligned8
cbnz count, .Lmutual_align
/* Calculate the number of full and partial words -1. */
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. */
/* Start of performance-critical section -- one 64B cache line. */
.Lloop_aligned:
ldr data1, [src1], #8
ldr data2, [src2], #8
.Lstart_realigned:
subs limit_wd, limit_wd, #1
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
csinv endloop, diff, xzr, pl /* Last Dword or differences. */
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
ccmp endloop, #0, #0, eq
b.eq .Lloop_aligned
/* End of performance-critical section -- one 64B cache line. */
/* Not reached the limit, must have found the end or a diff. */
tbz limit_wd, #63, .Lnot_limit
/* Limit % 8 == 0 => all bytes significant. */
ands limit, limit, #7
b.eq .Lnot_limit
lsl limit, limit, #3 /* Bits -> bytes. */
mov mask, #~0
#ifdef __AARCH64EB__
lsr mask, mask, limit
#else
lsl mask, mask, limit
#endif
bic data1, data1, mask
bic data2, data2, mask
/* Make sure that the NUL byte is marked in the syndrome. */
orr has_nul, has_nul, mask
.Lnot_limit:
orr syndrome, diff, has_nul
#ifndef __AARCH64EB__
rev syndrome, syndrome
rev data1, data1
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
clz pos, syndrome
rev data2, data2
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#else
/* For big-endian we cannot use the trick with the syndrome value
as carry-propagation can corrupt the upper bits if the trailing
bytes in the string contain 0x01. */
/* However, if there is no NUL byte in the dword, we can generate
the result directly. We can't just subtract the bytes as the
MSB might be significant. */
cbnz has_nul, 1f
cmp data1, data2
cset result, ne
cneg result, result, lo
ret
1:
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
rev tmp3, data1
sub tmp1, tmp3, zeroones
orr tmp2, tmp3, #REP8_7f
bic has_nul, tmp1, tmp2
rev has_nul, has_nul
orr syndrome, diff, has_nul
clz pos, syndrome
/* The MS-non-zero bit of the syndrome marks either the first bit
that is different, or the top bit of the first zero byte.
Shifting left now will bring the critical information into the
top bits. */
lsl data1, data1, pos
lsl data2, data2, pos
/* But we need to zero-extend (char is unsigned) the value and then
perform a signed 32-bit subtraction. */
lsr data1, data1, #56
sub result, data1, data2, lsr #56
ret
#endif
.Lmutual_align:
/* Sources are mutually aligned, but are not currently at an
alignment boundary. Round down the addresses and then mask off
the bytes that precede the start point.
We also need to adjust the limit calculations, but without
overflowing if the limit is near ULONG_MAX. */
bic src1, src1, #7
bic src2, src2, #7
ldr data1, [src1], #8
neg tmp3, count, lsl #3 /* 64 - bits(bytes beyond align). */
ldr data2, [src2], #8
mov tmp2, #~0
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsl tmp2, tmp2, tmp3 /* Shift (count & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsr tmp2, tmp2, tmp3 /* Shift (count & 63). */
#endif
and tmp3, limit_wd, #7
lsr limit_wd, limit_wd, #3
/* Adjust the limit. Only low 3 bits used, so overflow irrelevant. */
add limit, limit, count
add tmp3, tmp3, count
orr data1, data1, tmp2
orr data2, data2, tmp2
add limit_wd, limit_wd, tmp3, lsr #3
b .Lstart_realigned
.p2align 6
/* Don't bother with dwords for up to 16 bytes. */
.Lmisaligned8:
cmp limit, #16
b.hs .Ltry_misaligned_words
.Lbyte_loop:
/* Perhaps we can do better than this. */
ldrb data1w, [src1], #1
ldrb data2w, [src2], #1
subs limit, limit, #1
ccmp data1w, #1, #0, hi /* NZCV = 0b0000. */
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.eq .Lbyte_loop
.Ldone:
sub result, data1, data2
ret
/* Align the SRC1 to a dword by doing a bytewise compare and then do
the dword loop. */
.Ltry_misaligned_words:
lsr limit_wd, limit, #3
cbz count, .Ldo_misaligned
neg count, count
and count, count, #7
sub limit, limit, count
lsr limit_wd, limit, #3
.Lpage_end_loop:
ldrb data1w, [src1], #1
ldrb data2w, [src2], #1
cmp data1w, #1
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
b.ne .Ldone
subs count, count, #1
b.hi .Lpage_end_loop
.Ldo_misaligned:
/* Prepare ourselves for the next page crossing. Unlike the aligned
loop, we fetch 1 less dword because we risk crossing bounds on
SRC2. */
mov count, #8
subs limit_wd, limit_wd, #1
b.lo .Ldone_loop
.Lloop_misaligned:
and tmp2, src2, #0xff8
eor tmp2, tmp2, #0xff8
cbz tmp2, .Lpage_end_loop
ldr data1, [src1], #8
ldr data2, [src2], #8
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
ccmp diff, #0, #0, eq
b.ne .Lnot_limit
subs limit_wd, limit_wd, #1
b.pl .Lloop_misaligned
.Ldone_loop:
/* We found a difference or a NULL before the limit was reached. */
and limit, limit, #7
cbz limit, .Lnot_limit
/* Read the last word. */
sub src1, src1, 8
sub src2, src2, 8
ldr data1, [src1, limit]
ldr data2, [src2, limit]
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
eor diff, data1, data2 /* Non-zero if differences found. */
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
ccmp diff, #0, #0, eq
b.ne .Lnot_limit
.Lret0:
mov result, #0
ret
.size strncmp, . - strncmp

View File

@@ -0,0 +1,188 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strnlen.S
*
* Copyright (c) 2013, Linaro Limited
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of the Linaro nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
*/
/* Arguments and results. */
#define srcin x0
#define len x0
#define limit x1
/* Locals and temporaries. */
#define src x2
#define data1 x3
#define data2 x4
#define data2a x5
#define has_nul1 x6
#define has_nul2 x7
#define tmp1 x8
#define tmp2 x9
#define tmp3 x10
#define tmp4 x11
#define zeroones x12
#define pos x13
#define limit_wd x14
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080
.text
.p2align 6
.Lstart:
/* Pre-pad to ensure critical loop begins an icache line. */
.rep 7
nop
.endr
/* Put this code here to avoid wasting more space with pre-padding. */
.Lhit_limit:
mov len, limit
ret
def_fn strnlen
cbz limit, .Lhit_limit
mov zeroones, #REP8_01
bic src, srcin, #15
ands tmp1, srcin, #15
b.ne .Lmisaligned
/* Calculate the number of full and partial words -1. */
sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */
lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
can be done in parallel across the entire word. */
/* The inner loop deals with two Dwords at a time. This has a
slightly higher start-up cost, but we should win quite quickly,
especially on cores with a high number of issue slots per
cycle, as we get much better parallelism out of the operations. */
/* Start of critial section -- keep to one 64Byte cache line. */
.Lloop:
ldp data1, data2, [src], #16
.Lrealigned:
sub tmp1, data1, zeroones
orr tmp2, data1, #REP8_7f
sub tmp3, data2, zeroones
orr tmp4, data2, #REP8_7f
bic has_nul1, tmp1, tmp2
bic has_nul2, tmp3, tmp4
subs limit_wd, limit_wd, #1
orr tmp1, has_nul1, has_nul2
ccmp tmp1, #0, #0, pl /* NZCV = 0000 */
b.eq .Lloop
/* End of critical section -- keep to one 64Byte cache line. */
orr tmp1, has_nul1, has_nul2
cbz tmp1, .Lhit_limit /* No null in final Qword. */
/* We know there's a null in the final Qword. The easiest thing
to do now is work out the length of the string and return
MIN (len, limit). */
sub len, src, srcin
cbz has_nul1, .Lnul_in_data2
#ifdef __AARCH64EB__
mov data2, data1
#endif
sub len, len, #8
mov has_nul2, has_nul1
.Lnul_in_data2:
#ifdef __AARCH64EB__
/* For big-endian, carry propagation (if the final byte in the
string is 0x01) means we cannot use has_nul directly. The
easiest way to get the correct byte is to byte-swap the data
and calculate the syndrome a second time. */
rev data2, data2
sub tmp1, data2, zeroones
orr tmp2, data2, #REP8_7f
bic has_nul2, tmp1, tmp2
#endif
sub len, len, #8
rev has_nul2, has_nul2
clz pos, has_nul2
add len, len, pos, lsr #3 /* Bits to bytes. */
cmp len, limit
csel len, len, limit, ls /* Return the lower value. */
ret
.Lmisaligned:
/* Deal with a partial first word.
We're doing two things in parallel here;
1) Calculate the number of words (but avoiding overflow if
limit is near ULONG_MAX) - to do this we need to work out
limit + tmp1 - 1 as a 65-bit value before shifting it;
2) Load and mask the initial data words - we force the bytes
before the ones we are interested in to 0xff - this ensures
early bytes will not hit any zero detection. */
sub limit_wd, limit, #1
neg tmp4, tmp1
cmp tmp1, #8
and tmp3, limit_wd, #15
lsr limit_wd, limit_wd, #4
mov tmp2, #~0
ldp data1, data2, [src], #16
lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */
add tmp3, tmp3, tmp1
#ifdef __AARCH64EB__
/* Big-endian. Early bytes are at MSB. */
lsl tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */
#else
/* Little-endian. Early bytes are at LSB. */
lsr tmp2, tmp2, tmp4 /* Shift (tmp1 & 63). */
#endif
add limit_wd, limit_wd, tmp3, lsr #4
orr data1, data1, tmp2
orr data2a, data2, tmp2
csinv data1, data1, xzr, le
csel data2, data2, data2a, le
b .Lrealigned
.size strnlen, . - .Lstart /* Include pre-padding in size. */

View File

@@ -0,0 +1,179 @@
/****************************************************************************
* libs/libc/machine/arm64/gnu/arch_strrchr.S
*
* Copyright (c) 2014, ARM Limited
* All rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the company nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/* Assumptions:
*
* ARMv8-a, AArch64
* Neon Available.
*/
/* Arguments and results. */
#define srcin x0
#define chrin w1
#define result x0
#define src x2
#define tmp1 x3
#define wtmp2 w4
#define tmp3 x5
#define src_match x6
#define src_offset x7
#define const_m1 x8
#define tmp4 x9
#define nul_match x10
#define chr_match x11
#define vrepchr v0
#define vdata1 v1
#define vdata2 v2
#define vhas_nul1 v3
#define vhas_nul2 v4
#define vhas_chr1 v5
#define vhas_chr2 v6
#define vrepmask_0 v7
#define vrepmask_c v16
#define vend1 v17
#define vend2 v18
/* Core algorithm.
For each 32-byte hunk we calculate a 64-bit syndrome value, with
two bits per byte (LSB is always in bits 0 and 1, for both big
and little-endian systems). For each tuple, bit 0 is set iff
the relevant byte matched the requested character; bit 1 is set
iff the relevant byte matched the NUL end of string (we trigger
off bit0 for the special case of looking for NUL). Since the bits
in the syndrome reflect exactly the order in which things occur
in the original string a count_trailing_zeros() operation will
identify exactly which byte is causing the termination, and why. */
/* Locals and temporaries. */
.macro def_fn f p2align=0
.text
.p2align \p2align
.global \f
.type \f, %function
\f:
.endm
def_fn strrchr
/* Magic constant 0x40100401 to allow us to identify which lane
matches the requested byte. Magic constant 0x80200802 used
similarly for NUL termination. */
mov wtmp2, #0x0401
movk wtmp2, #0x4010, lsl #16
dup vrepchr.16b, chrin
bic src, srcin, #31 /* Work with aligned 32-byte hunks. */
dup vrepmask_c.4s, wtmp2
mov src_offset, #0
ands tmp1, srcin, #31
add vrepmask_0.4s, vrepmask_c.4s, vrepmask_c.4s /* equiv: lsl #1 */
b.eq .Laligned
/* Input string is not 32-byte aligned. Rather than forcing
the padding bytes to a safe value, we calculate the syndrome
for all the bytes, but then mask off those bits of the
syndrome that are related to the padding. */
ld1 {vdata1.16b, vdata2.16b}, [src], #32
neg tmp1, tmp1
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul2.16b // 256->128
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul1.16b // 128->64
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr1.16b // 128->64
mov nul_match, vhas_nul1.2d[0]
lsl tmp1, tmp1, #1
mov const_m1, #~0
mov chr_match, vhas_chr1.2d[0]
lsr tmp3, const_m1, tmp1
bic nul_match, nul_match, tmp3 // Mask padding bits.
bic chr_match, chr_match, tmp3 // Mask padding bits.
cbnz nul_match, .Ltail
.Lloop:
cmp chr_match, #0
csel src_match, src, src_match, ne
csel src_offset, chr_match, src_offset, ne
.Laligned:
ld1 {vdata1.16b, vdata2.16b}, [src], #32
cmeq vhas_nul1.16b, vdata1.16b, #0
cmeq vhas_chr1.16b, vdata1.16b, vrepchr.16b
cmeq vhas_nul2.16b, vdata2.16b, #0
cmeq vhas_chr2.16b, vdata2.16b, vrepchr.16b
addp vend1.16b, vhas_nul1.16b, vhas_nul2.16b // 256->128
and vhas_chr1.16b, vhas_chr1.16b, vrepmask_c.16b
and vhas_chr2.16b, vhas_chr2.16b, vrepmask_c.16b
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr2.16b // 256->128
addp vend1.16b, vend1.16b, vend1.16b // 128->64
addp vhas_chr1.16b, vhas_chr1.16b, vhas_chr1.16b // 128->64
mov nul_match, vend1.2d[0]
mov chr_match, vhas_chr1.2d[0]
cbz nul_match, .Lloop
and vhas_nul1.16b, vhas_nul1.16b, vrepmask_0.16b
and vhas_nul2.16b, vhas_nul2.16b, vrepmask_0.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul2.16b
addp vhas_nul1.16b, vhas_nul1.16b, vhas_nul1.16b
mov nul_match, vhas_nul1.2d[0]
.Ltail:
/* Work out exactly where the string ends. */
sub tmp4, nul_match, #1
eor tmp4, tmp4, nul_match
ands chr_match, chr_match, tmp4
/* And pick the values corresponding to the last match. */
csel src_match, src, src_match, ne
csel src_offset, chr_match, src_offset, ne
/* Count down from the top of the syndrome to find the last match. */
clz tmp3, src_offset
/* Src_match points beyond the word containing the match, so we can
simply subtract half the bit-offset into the syndrome. Because
we are counting down, we need to go back one more character. */
add tmp3, tmp3, #2
sub result, src_match, tmp3, lsr #1
/* But if the syndrome shows no match was found, then return NULL. */
cmp src_offset, #0
csel result, result, xzr, ne
ret
.size strrchr, . - strrchr

View File

@@ -44,6 +44,7 @@
*
****************************************************************************/
#ifndef CONFIG_LIBC_ARCH_STRCHRNUL
FAR char *strchrnul(FAR const char *s, int c)
{
if (s)
@@ -56,3 +57,4 @@ FAR char *strchrnul(FAR const char *s, int c)
return (FAR char *)s;
}
#endif

View File

@@ -30,7 +30,7 @@
* Public Functions
****************************************************************************/
#ifndef CONFIG_ARCH_STRNCMP
#ifndef CONFIG_LIBC_ARCH_STRNCMP
#undef strncmp /* See mm/README.txt */
int strncmp(FAR const char *cs, FAR const char *ct, size_t nb)
{

View File

@@ -34,6 +34,7 @@
* occurrence of the character c in the string s.
*/
#ifndef CONFIG_LIBC_ARCH_STRRCHR
#undef strrchr /* See mm/README.txt */
FAR char *strrchr(FAR const char *s, int c)
{
@@ -50,3 +51,4 @@ FAR char *strrchr(FAR const char *s, int c)
return (FAR char *)r;
}
#endif