Files
grblHAL/nuts_bolts.h
Terje Io 106f5fd573 Refactored assignment of of auxiliary I/O for "standard" inputs and outputs to make it more robust and easier to follow for developers.
Moved probe signal handling from drivers to the core, improved handling of probe disconnected signal.
NOTE: The changes above are quite large, please verify probe operation after installation.
2025-10-16 17:22:32 +02:00

366 lines
9.4 KiB
C

/*
nuts_bolts.h - Header file for shared definitions, variables, and functions
Part of grblHAL
Copyright (c) 2017-2025 Terje Io
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _NUTS_BOLTS_H_
#define _NUTS_BOLTS_H_
#include "grbl.h"
#include "errors.h"
#ifndef true
#define false 0
#define true 1
#endif
#define Off 0
#define On 1
#define SOME_LARGE_VALUE 1.0E+38f
#ifndef M_PI
#define M_PI 3.14159265358979323846f
#endif
#define TOLERANCE_EQUAL 0.0001f
#define RADDEG 0.01745329251994329577f // Radians per degree
#define DEGRAD 57.29577951308232087680f // Degrees per radians
#define SQRT3 1.73205080756887729353f
#define SIN120 0.86602540378443864676f
#define COS120 -0.5f
#define TAN60 1.73205080756887729353f
#define SIN30 0.5f
#define TAN30 0.57735026918962576451f
#define TAN30_2 0.28867513459481288225f
#define ABORTED (sys.abort || sys.cancel)
// Convert character to uppercase
#define CAPS(c) ((c >= 'a' && c <= 'z') ? (c & 0x5F) : c)
#define LCAPS(c) ((c >= 'A' && c <= 'Z') ? (c | 0x20) : c)
#if !(defined(STM32F103xB) || defined(STM32F303xC))
#ifndef UNUSED
#define UNUSED(x) (void)(x)
#endif
#endif
// Axis array index values. Must start with 0 and be continuous.
#define X_AXIS 0 // Axis indexing value.
#define Y_AXIS 1
#define Z_AXIS 2
#define X_AXIS_BIT bit(X_AXIS)
#define Y_AXIS_BIT bit(Y_AXIS)
#define Z_AXIS_BIT bit(Z_AXIS)
#if N_AXIS > 3
#define A_AXIS 3
#define A_AXIS_BIT bit(A_AXIS)
#endif
#if N_AXIS > 4
#define B_AXIS 4
#define B_AXIS_BIT bit(B_AXIS)
#endif
#if N_AXIS > 5
#define C_AXIS 5
#define C_AXIS_BIT bit(C_AXIS)
#endif
#if N_AXIS > 6
#define U_AXIS 6
#define U_AXIS_BIT bit(U_AXIS)
#endif
#if N_AXIS == 8
#define V_AXIS 7
#define V_AXIS_BIT bit(V_AXIS)
#endif
#if N_AXIS == 3
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT)
#elif N_AXIS == 4
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT)
#elif N_AXIS == 5
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT)
#elif N_AXIS == 6
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT)
#elif N_AXIS == 7
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT|U_AXIS_BIT)
#else
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT|U_AXIS_BIT|V_AXIS_BIT)
#endif
#ifdef V_AXIS
#define N_ABC_AXIS 5
#elif defined(U_AXIS)
#define N_ABC_AXIS 4
#elif defined(C_AXIS)
#define N_ABC_AXIS 3
#elif defined(B_AXIS)
#define N_ABC_AXIS 2
#elif defined(A_AXIS)
#define N_ABC_AXIS 1
#else
#define N_ABC_AXIS 0
#endif
typedef union {
uint8_t mask;
uint8_t bits;
uint8_t value;
struct {
uint8_t x :1,
y :1,
z :1,
a :1,
b :1,
c :1,
u :1,
v :1;
};
} axes_signals_t;
//! Coordinate data.
typedef union {
float values[N_AXIS];
struct {
float x;
float y;
float z;
#ifdef A_AXIS
float a;
#endif
#ifdef B_AXIS
float b;
#endif
#ifdef C_AXIS
float c;
#endif
#ifdef U_AXIS
float u;
#endif
#ifdef V_AXIS
float v;
#endif
};
struct {
float m0;
float m1;
float m2;
#if N_AXIS > 3
float m3;
#endif
#if N_AXIS > 4
float m4;
#endif
#if N_AXIS > 5
float m5;
#endif
#if N_AXIS > 6
float m6;
#endif
#if N_AXIS == 8
float m7;
#endif
};
} coord_data_t;
typedef union {
int32_t value[N_AXIS];
struct {
int32_t x;
int32_t y;
int32_t z;
#ifdef A_AXIS
int32_t a;
#endif
#ifdef B_AXIS
int32_t b;
#endif
#ifdef C_AXIS
int32_t c;
#endif
#ifdef U_AXIS
int32_t u;
#endif
#ifdef V_AXIS
int32_t v;
#endif
};
} mpos_t;
typedef union {
float values[2];
struct {
float x;
float y;
};
} point_2d_t;
#pragma pack(push, 1)
//! \brief Limit switches struct, consists of four packed axes_signals_t structs in 32 bits.
typedef union {
uint32_t bits;
struct {
axes_signals_t min; //!< Min limit switches status, required.
axes_signals_t max; //!< Max limit switches status, optional.
axes_signals_t min2; //!< Secondary min limit switch(es) status, required for auto squaring enabled axes.
axes_signals_t max2; //!< Secondary max limit switches status, optional (of no practical use?).
};
} limit_signals_t;
//! \brief Home switches struct, consists of two packed axes_signals_t structs.
typedef struct {
axes_signals_t a; //!< Primary home switches status, optional. Limit signals are used for homing if not available.
axes_signals_t b; //!< Secondary home switch(es) status, required for auto squaring enabled axes if primary switches are available.
} home_signals_t;
//! \brief Stepper driver states struct.
typedef union {
uint16_t state;
home_signals_t details; // Stepper driver signals states.
} stepper_state_t;
//! \brief // Stepper driver warning and fault signal states, consists of two packed stepper_state_t structs in 32 bits.
typedef struct {
stepper_state_t warning; //!< Stepper drivers warning states.
stepper_state_t fault; //!< Stepper drivers fault states.
} stepper_status_t;
#pragma pack(pop)
// NOTE: the pin_function_t enum must be kept in sync with any changes!
typedef union {
uint16_t bits;
uint16_t mask;
uint16_t value;
struct {
uint16_t reset :1,
feed_hold :1,
cycle_start :1,
safety_door_ajar :1,
block_delete :1,
stop_disable :1, //! M1
e_stop :1,
probe_disconnected :1,
motor_fault :1,
motor_warning :1,
limits_override :1,
single_block :1,
tls_overtravel :1, //! used for probe (toolsetter) protection
probe_overtravel :1, //! used for probe protection
probe_triggered :1, //! used for probe protection
deasserted :1; //! this flag is set if signals are deasserted.
};
} control_signals_t;
typedef enum {
DelayMode_Dwell = 0,
DelayMode_SysSuspend
} delaymode_t;
// Conversions
#define MM_PER_INCH (25.40f)
#define INCH_PER_MM (0.0393701f)
#define MAX_INT_DIGITS 9 // Maximum number of digits in int32 (and float)
#define STRLEN_COORDVALUE (MAX_INT_DIGITS + N_DECIMAL_COORDVALUE_INCH + 1) // 8.4 format - excluding terminating null
// Useful macros
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef constrain
#define constrain(val, min, max) ((val) < (min) ? (min) : ((val) > (max) ? (max) : (val)))
#endif
#define clear_vector(a) memset(a, 0, sizeof(a))
#define isequal_position_vector(a, b) !memcmp(a, b, sizeof(coord_data_t))
#define is0_position_vector(a) !memcmp(a, &((coord_data_t){0}), sizeof(coord_data_t))
// Bit field and masking macros
#ifndef bit
#define bit(n) (1UL << (n))
#endif
#define bit_true(x, mask) (x) |= (mask)
#define bit_false(x, mask) (x) &= ~(mask)
#define BIT_SET(x, bit, v) { if (v) { x |= (bit); } else { x &= ~(bit); } }
#define bit_istrue(x, mask) (((x) & (mask)) != 0)
#define bit_isfalse(x, mask) (((x) & (mask)) == 0)
extern char const *const axis_letter[];
extern const coord_data_t null_vector;
// Converts an uint32 variable to string.
char *uitoa (uint32_t n);
// Converts a float variable to string with the specified number of decimal places.
char *ftoa (float n, uint8_t decimal_places);
// Trim trailing zeros and possibly decimal point
char *trim_float (char *s);
// Returns true if float value is a whole number (integer)
bool isintf (float value);
status_code_t read_uint (const char *line, uint_fast8_t *char_counter, uint32_t *uint_ptr);
// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while float_ptr is
// a pointer to the result variable. Returns true when it succeeds
bool read_float (const char *line, uint_fast8_t *char_counter, float *float_ptr);
// Non-blocking delay function used for general operation and suspend features.
bool delay_sec (float seconds, delaymode_t mode);
float convert_delta_vector_to_unit_vector(float *vector);
// parse ISO8601 datetime
struct tm *get_datetime (const char *s);
char *strcaps (char *s);
uint_fast8_t bit_count (uint32_t bits);
void dummy_handler (void);
#ifdef _WIN32
static int ffs (int i)
{
int idx = 0;
while(i) {
idx++;
if(i & 1)
break;
i >>= 1;
}
return idx;
}
#endif // _WIN32
#endif