Files
ardupilot/ArduCopter/takeoff.cpp

260 lines
11 KiB
C++

#include "Copter.h"
Mode::_TakeOff Mode::takeoff;
_AutoTakeoff Mode::auto_takeoff;
// This file contains the high-level takeoff logic for Loiter, PosHold, AltHold, Sport modes.
// The take-off can be initiated from a GCS NAV_TAKEOFF command which includes a takeoff altitude
// A safe takeoff speed is calculated and used to calculate a time_ms
// the pos_control target is then slowly increased until time_ms expires
bool Mode::do_user_takeoff_start_m(float takeoff_alt_m)
{
copter.flightmode->takeoff.start_m(takeoff_alt_m);
return true;
}
// initiate user takeoff - called when MAVLink TAKEOFF command is received
bool Mode::do_user_takeoff_U_m(float takeoff_alt_m, bool must_navigate)
{
if (!copter.motors->armed()) {
return false;
}
if (!copter.ap.land_complete) {
// can't takeoff again!
return false;
}
if (!has_user_takeoff(must_navigate)) {
// this mode doesn't support user takeoff
return false;
}
if (takeoff_alt_m <= copter.current_loc.alt * 0.01) {
// can't takeoff downwards...
return false;
}
// Vehicles using motor interlock should return false if motor interlock is disabled.
// Interlock must be enabled to allow the controller to spool up the motor(s) for takeoff.
if (!motors->get_interlock() && copter.ap.using_interlock) {
return false;
}
if (!do_user_takeoff_start_m(takeoff_alt_m)) {
return false;
}
copter.set_auto_armed(true);
return true;
}
// start takeoff to specified altitude above home in meters
void Mode::_TakeOff::start_m(float alt_m)
{
// initialise takeoff state
_running = true;
take_off_start_alt_m = copter.pos_control->get_pos_estimate_U_m();
take_off_complete_alt_m = take_off_start_alt_m + alt_m;
}
// stop takeoff
void Mode::_TakeOff::stop()
{
_running = false;
// Check if we have progressed far enough through the takeoff process that the
// aircraft may have left the ground but not yet detected the climb.
if (copter.attitude_control->get_throttle_in() > copter.get_non_takeoff_throttle()) {
copter.set_land_complete(false);
}
}
// do_pilot_takeoff_ms - controls the vertical position controller during the process of taking off
// take off is complete when the vertical target reaches the take off altitude.
// climb is cancelled if pilot_climb_rate_ms becomes negative
// sets take off to complete when target altitude is within 1% of the take off altitude
void Mode::_TakeOff::do_pilot_takeoff_ms(float pilot_climb_rate_ms)
{
// return pilot_climb_rate if take-off inactive
if (!_running) {
return;
}
if (copter.ap.land_complete) {
// send throttle to attitude controller with angle boost
float throttle_norm = constrain_float(copter.attitude_control->get_throttle_in() + copter.G_Dt / copter.g2.takeoff_throttle_slew_time, 0.0, 1.0);
copter.attitude_control->set_throttle_out(throttle_norm, true, 0.0);
// tell position controller to reset alt target and reset I terms
copter.pos_control->D_init_controller();
if (throttle_norm >= MIN(copter.g2.takeoff_throttle_max, 0.9) ||
(copter.pos_control->get_estimated_accel_U_mss() >= 0.5 * copter.pos_control->D_get_max_accel_mss()) ||
(copter.pos_control->get_vel_estimate_U_ms() >= constrain_float(pilot_climb_rate_ms, copter.pos_control->get_max_speed_up_ms() * 0.1, copter.pos_control->get_max_speed_up_ms() * 0.5)) ||
(is_positive(take_off_complete_alt_m - take_off_start_alt_m) && copter.pos_control->get_pos_estimate_U_m() - take_off_start_alt_m > 0.5 * (take_off_complete_alt_m - take_off_start_alt_m))) {
// throttle > 90%
// acceleration > 50% maximum acceleration
// velocity > 10% maximum velocity && commanded climb rate
// velocity > 50% maximum velocity
// altitude change greater than half complete alt from start off alt
copter.set_land_complete(false);
}
} else {
float pos_d_m = -take_off_complete_alt_m;
float vel_d_ms = -pilot_climb_rate_ms;
// command the aircraft to the take off altitude and current pilot climb rate
copter.pos_control->input_pos_vel_accel_D_m(pos_d_m, vel_d_ms, 0.0);
// stop take off early and return if negative climb rate is commanded or we are within 0.1% of our take off altitude
if (is_negative(pilot_climb_rate_ms) ||
(take_off_complete_alt_m - take_off_start_alt_m) * 0.999f < copter.pos_control->get_pos_desired_U_m() - take_off_start_alt_m) {
stop();
}
}
}
// auto_takeoff_run - controls the vertical position controller during the process of taking off in auto modes
// auto_takeoff_complete set to true when target altitude is within 10% of the take off altitude and less than 50% max climb rate
void _AutoTakeoff::run()
{
const auto &g2 = copter.g2;
const auto &wp_nav = copter.wp_nav;
auto *motors = copter.motors;
auto *pos_control = copter.pos_control;
auto *attitude_control = copter.attitude_control;
// if not armed set throttle to zero and exit immediately
if (!motors->armed() || !copter.ap.auto_armed) {
// do not spool down tradheli when on the ground with motor interlock enabled
copter.flightmode->make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
// update auto_takeoff_no_nav_alt_m
no_nav_alt_m = pos_control->get_pos_estimate_U_m() + g2.wp_navalt_min_m;
return;
}
// get terrain offset
float terrain_u_m = 0.0f;
if (is_terrain_alt && !wp_nav->get_terrain_U_m(terrain_u_m)) {
// trigger terrain failsafe
copter.failsafe_terrain_on_event();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// aircraft stays in landed state until rotor speed run up has finished
if (motors->get_spool_state() != AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
// motors have not completed spool up yet so relax navigation and position controllers
pos_control->NE_relax_velocity_controller();
pos_control->NE_update_controller();
pos_control->D_relax_controller(0.0f); // forces throttle output to decay to zero
pos_control->D_update_controller();
attitude_control->reset_yaw_target_and_rate();
attitude_control->reset_rate_controller_I_terms();
attitude_control->input_thrust_vector_rate_heading_rads(pos_control->get_thrust_vector(), 0.0);
// update auto_takeoff_no_nav_alt_m
no_nav_alt_m = pos_control->get_pos_estimate_U_m() + g2.wp_navalt_min_m;
return;
}
// aircraft stays in landed state until vertical movement is detected or 90% throttle is reached
if (copter.ap.land_complete) {
// send throttle to attitude controller with angle boost
float throttle = constrain_float(copter.attitude_control->get_throttle_in() + copter.G_Dt / copter.g2.takeoff_throttle_slew_time, 0.0, 1.0);
copter.attitude_control->set_throttle_out(throttle, true, 0.0);
// tell position controller to reset alt target and reset I terms
copter.pos_control->D_init_controller();
pos_control->NE_relax_velocity_controller();
pos_control->NE_update_controller();
attitude_control->reset_rate_controller_I_terms();
attitude_control->input_thrust_vector_rate_heading_rads(pos_control->get_thrust_vector(), 0.0);
if (throttle >= MIN(copter.g2.takeoff_throttle_max, 0.9) ||
(copter.pos_control->get_estimated_accel_U_mss() >= 0.5 * copter.pos_control->D_get_max_accel_mss()) ||
(copter.pos_control->get_vel_estimate_U_ms() >= 0.1 * copter.pos_control->get_max_speed_up_ms()) ||
( no_nav_active && (pos_control->get_pos_estimate_U_m() >= no_nav_alt_m))) {
// throttle > 90%
// acceleration > 50% maximum acceleration
// velocity > 10% maximum velocity
// altitude change greater than half auto_takeoff_no_nav_alt_cm
copter.set_land_complete(false);
}
return;
}
// check if we are not navigating because of low altitude
if (no_nav_active) {
// check if vehicle has reached no_nav_alt threshold
if (pos_control->get_pos_estimate_U_m() >= no_nav_alt_m) {
no_nav_active = false;
}
pos_control->NE_relax_velocity_controller();
} else {
Vector2f vel_zero;
Vector2f accel_zero;
pos_control->input_vel_accel_NE_m(vel_zero, accel_zero);
}
pos_control->NE_update_controller();
// command the aircraft to the take off altitude
float pos_d_m = -(complete_alt_m + terrain_u_m);
float vel_zero = 0.0;
copter.pos_control->input_pos_vel_accel_D_m(pos_d_m, vel_zero, 0.0);
// run the vertical position controller and set output throttle
pos_control->D_update_controller();
// call attitude controller with auto yaw
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), copter.flightmode->auto_yaw.get_heading());
// takeoff complete when we are less than 1% of the stopping distance from the target altitude
// and 10% our maximum climb rate
const float vel_threshold_fraction = 0.1;
// stopping distance from vel_threshold_fraction * max velocity
const float stop_distance_m = 0.5 * sq(vel_threshold_fraction * copter.pos_control->get_max_speed_up_ms()) / copter.pos_control->D_get_max_accel_mss();
bool reached_altitude = copter.pos_control->get_pos_desired_U_m() >= -pos_d_m - stop_distance_m;
bool reached_climb_rate = copter.pos_control->get_vel_desired_U_ms() < copter.pos_control->get_max_speed_up_ms() * vel_threshold_fraction;
complete = reached_altitude && reached_climb_rate;
// calculate completion for location in case it is needed for a smooth transition to wp_nav
if (complete) {
no_nav_active = false;
const Vector3p& _complete_pos_ned_m = copter.pos_control->get_pos_desired_NED_m();
complete_pos_ned_m = Vector3p{_complete_pos_ned_m.x, _complete_pos_ned_m.y, pos_d_m};
}
}
void _AutoTakeoff::start_m(float _complete_alt_m, bool _is_terrain_alt)
{
// auto_takeoff_complete_alt_m is a problem if equal to auto_takeoff_start_alt_m
complete_alt_m = _complete_alt_m;
is_terrain_alt = _is_terrain_alt;
complete = false;
// initialise auto_takeoff_no_nav_alt_m
const auto &g2 = copter.g2;
no_nav_alt_m = copter.pos_control->get_pos_estimate_U_m() + g2.wp_navalt_min_m;
if ((g2.wp_navalt_min_m > 0) && (copter.flightmode->is_disarmed_or_landed() || !copter.motors->get_interlock())) {
// we are not flying, climb with no navigation to current alt-above-ekf-origin + wp_navalt_min_m
no_nav_active = true;
} else {
no_nav_active = false;
}
}
// return takeoff final target position in m from the EKF origin if takeoff has completed successfully
bool _AutoTakeoff::get_completion_pos_ned_m(Vector3p& pos_ned_m)
{
// only provide location if takeoff has completed
if (!complete) {
return false;
}
pos_ned_m = complete_pos_ned_m;
return true;
}
bool Mode::is_taking_off() const
{
if (!has_user_takeoff(false)) {
return false;
}
return takeoff.running();
}