mirror of
https://github.com/ArduPilot/ardupilot.git
synced 2026-02-08 20:09:13 +08:00
626 lines
31 KiB
C++
626 lines
31 KiB
C++
#include "Copter.h"
|
||
|
||
#if MODE_POSHOLD_ENABLED
|
||
|
||
/*
|
||
* Init and run calls for PosHold flight mode
|
||
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller
|
||
*/
|
||
|
||
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter
|
||
|
||
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX_MS 6000 // Maximum duration (ms) allowed for braking before transitioning to loiter
|
||
#define POSHOLD_BRAKE_TO_LOITER_TIME_MS 1500 // Duration (ms) over which braking is blended into loiter control during BRAKE_TO_LOITER phase
|
||
#define POSHOLD_WIND_COMP_START_TIME_MS 1500 // Delay (ms) after entering loiter before wind compensation begins updating
|
||
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIME_MS 500 // Duration (ms) over which control is blended from autopilot to pilot input during CONTROLLER_TO_PILOT_OVERRIDE
|
||
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // Low-pass filter factor for smoothing pilot roll/pitch input as it returns to center
|
||
#define TC_WIND_COMP 0.0025f // Time constant for filtering wind compensation lean angle estimates (used in low-pass filter)
|
||
|
||
// definitions that are independent of main loop rate
|
||
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE_RAD radians(18.0f) // max angle required (in radians) after which the smooth stick release effect is applied
|
||
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX_MS 0.10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
|
||
#define POSHOLD_WIND_COMP_LEAN_PCT_MAX 0.6666f // wind compensation no more than 2/3rds of angle max to ensure pilot can always override
|
||
|
||
// poshold_init - initialise PosHold controller
|
||
bool ModePosHold::init(bool ignore_checks)
|
||
{
|
||
// set vertical speed and acceleration limits
|
||
pos_control->D_set_max_speed_accel_m(get_pilot_speed_dn_ms(), get_pilot_speed_up_ms(), get_pilot_accel_D_mss());
|
||
pos_control->D_set_correction_speed_accel_m(get_pilot_speed_dn_ms(), get_pilot_speed_up_ms(), get_pilot_accel_D_mss());
|
||
|
||
// initialise the vertical position controller
|
||
if (!pos_control->D_is_active()) {
|
||
pos_control->D_init_controller();
|
||
}
|
||
|
||
// initialise lean angles to current attitude
|
||
pilot_roll_rad = 0.0f;
|
||
pilot_pitch_rad = 0.0f;
|
||
|
||
// compute brake_gain in rad/(m/s);
|
||
brake.gain = radians((15.0f * (float)g.poshold_brake_rate_degs + 95.0f) * 0.01f);
|
||
|
||
if (copter.ap.land_complete) {
|
||
// if landed begin in loiter mode
|
||
roll_mode = RPMode::LOITER;
|
||
pitch_mode = RPMode::LOITER;
|
||
} else {
|
||
// if not landed start in pilot override to avoid hard twitch
|
||
roll_mode = RPMode::PILOT_OVERRIDE;
|
||
pitch_mode = RPMode::PILOT_OVERRIDE;
|
||
}
|
||
|
||
// initialise loiter
|
||
loiter_nav->clear_pilot_desired_acceleration();
|
||
loiter_nav->init_target();
|
||
|
||
// initialise wind_comp each time PosHold is switched on
|
||
init_wind_comp_estimate();
|
||
|
||
return true;
|
||
}
|
||
|
||
// poshold_run - runs the PosHold controller
|
||
// should be called at 100hz or more
|
||
void ModePosHold::run()
|
||
{
|
||
const uint32_t now_ms = AP_HAL::millis();
|
||
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
||
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls
|
||
const Vector3f& vel_ned_ms = pos_control->get_vel_estimate_NED_ms();
|
||
|
||
// enforce minimum allowed value for poshold_brake_rate_degs
|
||
if (g.poshold_brake_rate_degs < POSHOLD_BRAKE_RATE_MIN) {
|
||
g.poshold_brake_rate_degs.set_and_save(POSHOLD_BRAKE_RATE_MIN);
|
||
}
|
||
|
||
// set vertical speed and acceleration limits
|
||
pos_control->D_set_max_speed_accel_m(get_pilot_speed_dn_ms(), get_pilot_speed_up_ms(), get_pilot_accel_D_mss());
|
||
loiter_nav->clear_pilot_desired_acceleration();
|
||
|
||
// apply SIMPLE mode transform to pilot inputs
|
||
update_simple_mode();
|
||
|
||
// convert pilot input to lean angles
|
||
float target_roll_rad, target_pitch_rad;
|
||
get_pilot_desired_lean_angles_rad(target_roll_rad, target_pitch_rad, attitude_control->lean_angle_max_rad(), attitude_control->get_althold_lean_angle_max_rad());
|
||
|
||
// pilot desired yaw rate already rad/s
|
||
float target_yaw_rate_rads = get_pilot_desired_yaw_rate_rads();
|
||
|
||
// pilot desired climb rate (m/s)
|
||
float target_climb_rate_ms = get_pilot_desired_climb_rate_ms();
|
||
target_climb_rate_ms = constrain_float(target_climb_rate_ms, -get_pilot_speed_dn_ms(), get_pilot_speed_up_ms());
|
||
|
||
// relax loiter target if we might be landed
|
||
if (copter.ap.land_complete_maybe) {
|
||
loiter_nav->soften_for_landing();
|
||
}
|
||
|
||
// state machine
|
||
AltHoldModeState poshold_state = get_alt_hold_state_D_ms(target_climb_rate_ms);
|
||
|
||
switch (poshold_state) {
|
||
|
||
case AltHoldModeState::MotorStopped:
|
||
attitude_control->reset_rate_controller_I_terms();
|
||
attitude_control->reset_yaw_target_and_rate(false);
|
||
pos_control->D_relax_controller(0.0f); // forces throttle output to decay to zero
|
||
loiter_nav->clear_pilot_desired_acceleration();
|
||
loiter_nav->init_target();
|
||
|
||
// set poshold state to pilot override
|
||
roll_mode = RPMode::PILOT_OVERRIDE;
|
||
pitch_mode = RPMode::PILOT_OVERRIDE;
|
||
|
||
// initialise wind compensation estimate
|
||
init_wind_comp_estimate();
|
||
break;
|
||
|
||
case AltHoldModeState::Landed_Ground_Idle:
|
||
loiter_nav->clear_pilot_desired_acceleration();
|
||
loiter_nav->init_target();
|
||
attitude_control->reset_yaw_target_and_rate();
|
||
init_wind_comp_estimate();
|
||
FALLTHROUGH;
|
||
|
||
case AltHoldModeState::Landed_Pre_Takeoff:
|
||
attitude_control->reset_rate_controller_I_terms_smoothly();
|
||
pos_control->D_relax_controller(0.0f); // forces throttle output to decay to zero
|
||
|
||
// set poshold state to pilot override
|
||
roll_mode = RPMode::PILOT_OVERRIDE;
|
||
pitch_mode = RPMode::PILOT_OVERRIDE;
|
||
break;
|
||
|
||
case AltHoldModeState::Takeoff:
|
||
// initiate take-off
|
||
if (!takeoff.running()) {
|
||
takeoff.start_m(constrain_float(g.pilot_takeoff_alt_cm * 0.01f, 0.0f, 10.0f));
|
||
}
|
||
|
||
// avoidance-adjusted climb
|
||
target_climb_rate_ms = get_avoidance_adjusted_climbrate_ms(target_climb_rate_ms);
|
||
|
||
// set position controller targets adjusted for pilot input
|
||
takeoff.do_pilot_takeoff_ms(target_climb_rate_ms);
|
||
|
||
// init and update loiter although pilot is controlling lean angles
|
||
loiter_nav->clear_pilot_desired_acceleration();
|
||
loiter_nav->init_target();
|
||
|
||
// pilot override
|
||
roll_mode = RPMode::PILOT_OVERRIDE;
|
||
pitch_mode = RPMode::PILOT_OVERRIDE;
|
||
break;
|
||
|
||
case AltHoldModeState::Flying:
|
||
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
|
||
|
||
// avoidance-adjusted climb
|
||
target_climb_rate_ms = get_avoidance_adjusted_climbrate_ms(target_climb_rate_ms);
|
||
|
||
#if AP_RANGEFINDER_ENABLED
|
||
// update the vertical offset based on the surface measurement
|
||
copter.surface_tracking.update_surface_offset();
|
||
#endif
|
||
|
||
// Send the commanded climb rate to the position controller
|
||
pos_control->D_set_pos_target_from_climb_rate_ms(target_climb_rate_ms);
|
||
break;
|
||
}
|
||
|
||
// convert earth-frame velocities to body-frame (m/s)
|
||
float vel_fw_ms = vel_ned_ms.x * ahrs.cos_yaw() + vel_ned_ms.y * ahrs.sin_yaw();
|
||
float vel_right_ms = -vel_ned_ms.x * ahrs.sin_yaw() + vel_ned_ms.y * ahrs.cos_yaw();
|
||
|
||
// If not in LOITER, retrieve latest wind compensation lean angles (radians) related to current yaw
|
||
if (roll_mode != RPMode::LOITER || pitch_mode != RPMode::LOITER) {
|
||
get_wind_comp_lean_angles_rad(wind_comp_roll_rad, wind_comp_pitch_rad);
|
||
}
|
||
|
||
// Roll state machine
|
||
// Each state (aka mode) is responsible for:
|
||
// 1. dealing with pilot input
|
||
// 2. calculating the final roll output to the attitude controller
|
||
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
||
// Roll state machine
|
||
switch (roll_mode) {
|
||
|
||
case RPMode::PILOT_OVERRIDE:
|
||
// update pilot desired roll angle using latest radio input
|
||
// this filters the input so that it returns to zero no faster than the brake-rate
|
||
update_pilot_lean_angle_rad(pilot_roll_rad, target_roll_rad);
|
||
|
||
// switch to BRAKE mode for next iteration if no pilot input
|
||
if (is_zero(target_roll_rad) &&
|
||
(fabsf(pilot_roll_rad) < radians(2.0f * (float)g.poshold_brake_rate_degs))) {
|
||
// initialise BRAKE mode
|
||
roll_mode = RPMode::BRAKE; // Set brake roll mode
|
||
brake.roll_rad = 0.0f; // initialise braking angle to zero
|
||
brake.angle_max_roll_rad = 0.0f; // reset so we can detect when vehicle begins to flatten during braking
|
||
brake.start_time_roll_ms = now_ms; // timestamp (ms) marking start of roll-axis braking; updated during braking phase
|
||
brake.time_updated_roll = false; // flag the braking time can be re-estimated
|
||
}
|
||
|
||
// final lean angle should be pilot input plus wind compensation
|
||
roll_rad = pilot_roll_rad + wind_comp_roll_rad;
|
||
break;
|
||
|
||
case RPMode::BRAKE:
|
||
case RPMode::BRAKE_READY_TO_LOITER:
|
||
// calculate brake.roll angle to counter-act velocity
|
||
update_brake_angle_from_velocity(brake.roll_rad, vel_right_ms);
|
||
|
||
// update braking time estimate
|
||
if (!brake.time_updated_roll) {
|
||
// check if brake angle is increasing
|
||
if (fabsf(brake.roll_rad) >= brake.angle_max_roll_rad) {
|
||
brake.angle_max_roll_rad = fabsf(brake.roll_rad);
|
||
} else {
|
||
// braking angle has started decreasing so re-estimate braking time
|
||
brake.start_time_roll_ms = now_ms;
|
||
brake.time_updated_roll = true;
|
||
}
|
||
} else {
|
||
// scaling factors:
|
||
// 1.5 × (time to level, s) × 1000 -> ms
|
||
// time to level ≈ angle_max / brake_rate
|
||
const uint32_t brake_timeout_roll_ms = MIN(POSHOLD_BRAKE_TIME_ESTIMATE_MAX_MS, (1.5f * 1000.0f * (brake.angle_max_roll_rad / radians(g.poshold_brake_rate_degs))));
|
||
|
||
// if velocity is very low reduce braking time to 0.5 s
|
||
if ((fabsf(vel_right_ms) <= POSHOLD_SPEED_0) && (now_ms - brake.start_time_roll_ms > 500) && (brake_timeout_roll_ms > 500)) {
|
||
brake.start_time_roll_ms = now_ms - brake_timeout_roll_ms + 500;
|
||
}
|
||
|
||
if (now_ms - brake.start_time_roll_ms > brake_timeout_roll_ms) {
|
||
// indicate that we are ready to move to Loiter.
|
||
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
|
||
// Logic for engaging loiter is handled below the roll and pitch mode switch statements
|
||
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
}
|
||
}
|
||
|
||
// final lean angle is braking angle + wind compensation angle
|
||
roll_rad = brake.roll_rad + wind_comp_roll_rad;
|
||
|
||
// check for pilot input
|
||
if (!is_zero(target_roll_rad)) {
|
||
// init transition to pilot override
|
||
roll_controller_to_pilot_override();
|
||
}
|
||
break;
|
||
|
||
case RPMode::BRAKE_TO_LOITER:
|
||
case RPMode::LOITER:
|
||
// these modes are combined roll-pitch modes and are handled below
|
||
break;
|
||
|
||
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
|
||
// update pilot desired roll angle using latest radio input
|
||
// this filters the input so that it returns to zero no faster than the brake-rate
|
||
update_pilot_lean_angle_rad(pilot_roll_rad, target_roll_rad);
|
||
|
||
// count-down loiter to pilot timer
|
||
if (now_ms - controller_to_pilot_start_time_roll_ms > POSHOLD_CONTROLLER_TO_PILOT_MIX_TIME_MS) {
|
||
// when timer runs out switch to full pilot override for next iteration
|
||
roll_mode = RPMode::PILOT_OVERRIDE;
|
||
}
|
||
|
||
// calculate controller_to_pilot mix ratio
|
||
controller_to_pilot_roll_mix = (float)(now_ms - controller_to_pilot_start_time_roll_ms) / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIME_MS;
|
||
|
||
// mix final loiter lean angle and pilot desired lean angles
|
||
roll_rad = mix_controls(controller_to_pilot_roll_mix, controller_final_roll_rad, pilot_roll_rad + wind_comp_roll_rad);
|
||
break;
|
||
}
|
||
|
||
// Pitch state machine
|
||
// Each state (aka mode) is responsible for:
|
||
// 1. dealing with pilot input
|
||
// 2. calculating the final pitch output to the attitude contpitcher
|
||
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
|
||
// Pitch state machine
|
||
switch (pitch_mode) {
|
||
|
||
case RPMode::PILOT_OVERRIDE:
|
||
// update pilot desired pitch angle using latest radio input
|
||
// this filters the input so that it returns to zero no faster than the brake-rate
|
||
update_pilot_lean_angle_rad(pilot_pitch_rad, target_pitch_rad);
|
||
|
||
// switch to BRAKE next iteration if no pilot input
|
||
if (is_zero(target_pitch_rad) && (fabsf(pilot_pitch_rad) < radians(2 * g.poshold_brake_rate_degs))) {
|
||
// initialise BRAKE mode
|
||
pitch_mode = RPMode::BRAKE; // set brake pitch mode
|
||
brake.pitch_rad = 0.0f; // initialise braking angle to zero
|
||
brake.angle_max_pitch_rad = 0.0f; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
|
||
brake.start_time_pitch_ms = now_ms; // timestamp (ms) marking the start of pitch-axis
|
||
brake.time_updated_pitch = false; // flag the braking time can be re-estimated
|
||
}
|
||
|
||
// final lean angle = pilot input + wind compensation
|
||
pitch_rad = pilot_pitch_rad + wind_comp_pitch_rad;
|
||
break;
|
||
|
||
case RPMode::BRAKE:
|
||
case RPMode::BRAKE_READY_TO_LOITER:
|
||
// calculate brake_pitch angle to counter-act velocity
|
||
update_brake_angle_from_velocity(brake.pitch_rad, -vel_fw_ms);
|
||
|
||
// update braking time estimate
|
||
if (!brake.time_updated_pitch) {
|
||
// check if brake angle is increasing
|
||
if (fabsf(brake.pitch_rad) >= brake.angle_max_pitch_rad) {
|
||
brake.angle_max_pitch_rad = fabsf(brake.pitch_rad);
|
||
} else {
|
||
// braking angle has started decreasing so re-estimate braking time
|
||
brake.start_time_pitch_ms = now_ms;
|
||
brake.time_updated_pitch = true;
|
||
}
|
||
} else {
|
||
// timeout ≈ 1.5 * (angle / rate) in ms
|
||
const uint32_t brake_timeout_pitch_ms = MIN(POSHOLD_BRAKE_TIME_ESTIMATE_MAX_MS, (1.5 * 1000.0 * (brake.angle_max_pitch_rad / radians(g.poshold_brake_rate_degs))));
|
||
|
||
// if velocity is very low reduce braking time to 0.5 seconds
|
||
if ((fabsf(vel_fw_ms) <= POSHOLD_SPEED_0) && (now_ms - brake.start_time_pitch_ms > 500) && (brake_timeout_pitch_ms > 500)) {
|
||
brake.start_time_pitch_ms = now_ms - brake_timeout_pitch_ms + 500;
|
||
}
|
||
|
||
if (now_ms - brake.start_time_pitch_ms > brake_timeout_pitch_ms) {
|
||
// indicate that we are ready to move to Loiter.
|
||
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER
|
||
// logic for engaging loiter is handled below the pitch and pitch mode switch statements
|
||
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
}
|
||
}
|
||
|
||
// final lean angle is braking angle + wind compensation angle
|
||
pitch_rad = brake.pitch_rad + wind_comp_pitch_rad;
|
||
|
||
// check for pilot input
|
||
if (!is_zero(target_pitch_rad)) {
|
||
// init transition to pilot override
|
||
pitch_controller_to_pilot_override();
|
||
}
|
||
break;
|
||
|
||
case RPMode::BRAKE_TO_LOITER:
|
||
case RPMode::LOITER:
|
||
// these modes are combined pitch-pitch modes and are handled below
|
||
break;
|
||
|
||
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE:
|
||
// update pilot desired pitch angle using latest radio input
|
||
// this filters the input so that it returns to zero no faster than the brake-rate
|
||
update_pilot_lean_angle_rad(pilot_pitch_rad, target_pitch_rad);
|
||
|
||
// count-down loiter to pilot timer
|
||
if (now_ms - controller_to_pilot_start_time_pitch_ms > POSHOLD_CONTROLLER_TO_PILOT_MIX_TIME_MS) {
|
||
// when timer runs out switch to full pilot override for next iteration
|
||
pitch_mode = RPMode::PILOT_OVERRIDE;
|
||
}
|
||
|
||
// calculate controller_to_pilot mix ratio
|
||
controller_to_pilot_pitch_mix = (float)(now_ms - controller_to_pilot_start_time_pitch_ms) / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIME_MS;
|
||
|
||
// mix final loiter lean angle and pilot desired lean angles
|
||
pitch_rad = mix_controls(controller_to_pilot_pitch_mix, controller_final_pitch_rad, pilot_pitch_rad + wind_comp_pitch_rad);
|
||
break;
|
||
}
|
||
|
||
//
|
||
// Shared roll & pitch states (RPMode::BRAKE_TO_LOITER and RPMode::LOITER)
|
||
//
|
||
|
||
// switch into LOITER mode when both roll and pitch are ready
|
||
if (roll_mode == RPMode::BRAKE_READY_TO_LOITER && pitch_mode == RPMode::BRAKE_READY_TO_LOITER) {
|
||
roll_mode = RPMode::BRAKE_TO_LOITER;
|
||
pitch_mode = RPMode::BRAKE_TO_LOITER;
|
||
brake.loiter_transition_start_time_ms = now_ms;
|
||
// init loiter controller
|
||
loiter_nav->init_target_m((pos_control->get_pos_estimate_NED_m().xy() - pos_control->get_pos_offset_NED_m().xy()));
|
||
// set delay to start of wind compensation estimate updates
|
||
wind_comp_start_time_ms = now_ms;
|
||
}
|
||
|
||
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
|
||
if (roll_mode == RPMode::BRAKE_TO_LOITER || roll_mode == RPMode::LOITER) {
|
||
|
||
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
|
||
pitch_mode = roll_mode;
|
||
|
||
// handle combined roll+pitch mode
|
||
switch (roll_mode) {
|
||
case RPMode::BRAKE_TO_LOITER: {
|
||
// reduce brake_to_loiter timer
|
||
if (now_ms - brake.loiter_transition_start_time_ms > POSHOLD_BRAKE_TO_LOITER_TIME_MS) {
|
||
// progress to full loiter on next iteration
|
||
roll_mode = RPMode::LOITER;
|
||
pitch_mode = RPMode::LOITER;
|
||
}
|
||
|
||
// mix of brake and loiter controls
|
||
const float brake_to_loiter_mix = (float)(now_ms - brake.loiter_transition_start_time_ms) / (float)POSHOLD_BRAKE_TO_LOITER_TIME_MS;
|
||
|
||
// calculate brake roll/pitch angles to counter velocity
|
||
update_brake_angle_from_velocity(brake.roll_rad, vel_right_ms);
|
||
update_brake_angle_from_velocity(brake.pitch_rad, -vel_fw_ms);
|
||
|
||
// run loiter controller
|
||
loiter_nav->update(false);
|
||
|
||
// calculate final roll and pitch output by mixing loiter and brake controls
|
||
roll_rad = mix_controls(brake_to_loiter_mix, brake.roll_rad + wind_comp_roll_rad, loiter_nav->get_roll_rad());
|
||
pitch_rad = mix_controls(brake_to_loiter_mix, brake.pitch_rad + wind_comp_pitch_rad, loiter_nav->get_pitch_rad());
|
||
|
||
// check for pilot input
|
||
if (!is_zero(target_roll_rad) || !is_zero(target_pitch_rad)) {
|
||
// if roll input switch to pilot override for roll
|
||
if (!is_zero(target_roll_rad)) {
|
||
// init transition to pilot override
|
||
roll_controller_to_pilot_override();
|
||
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
||
// no need to reset brake.pitch here as wind comp has not been updated since last brake.pitch computation
|
||
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
}
|
||
// if pitch input switch to pilot override for pitch
|
||
if (!is_zero(target_pitch_rad)) {
|
||
// init transition to pilot override
|
||
pitch_controller_to_pilot_override();
|
||
if (is_zero(target_roll_rad)) {
|
||
// switch roll-mode to brake (but ready to go back to loiter anytime)
|
||
// no need to reset brake.roll here as wind comp has not been updated since last brake.roll computation
|
||
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
case RPMode::LOITER:
|
||
// run loiter controller
|
||
loiter_nav->update(false);
|
||
|
||
// set roll angle based on loiter controller outputs
|
||
roll_rad = loiter_nav->get_roll_rad();
|
||
pitch_rad = loiter_nav->get_pitch_rad();
|
||
|
||
// update wind compensation estimate
|
||
update_wind_comp_estimate();
|
||
|
||
// check for pilot input
|
||
if (!is_zero(target_roll_rad) || !is_zero(target_pitch_rad)) {
|
||
// if roll input switch to pilot override for roll
|
||
if (!is_zero(target_roll_rad)) {
|
||
// init transition to pilot override
|
||
roll_controller_to_pilot_override();
|
||
// switch pitch-mode to brake (but ready to go back to loiter anytime)
|
||
pitch_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
// reset brake.pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
|
||
brake.pitch_rad = 0.0f;
|
||
}
|
||
// if pitch input switch to pilot override for pitch
|
||
if (!is_zero(target_pitch_rad)) {
|
||
// init transition to pilot override on pitch
|
||
pitch_controller_to_pilot_override();
|
||
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time)
|
||
if (is_zero(target_roll_rad)) {
|
||
roll_mode = RPMode::BRAKE_READY_TO_LOITER;
|
||
brake.roll_rad = 0.0f;
|
||
}
|
||
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time)
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
// do nothing for uncombined roll and pitch modes
|
||
break;
|
||
}
|
||
}
|
||
|
||
// constrain target pitch/roll angles
|
||
const float angle_max_rad = copter.attitude_control->lean_angle_max_rad();
|
||
roll_rad = constrain_float(roll_rad, -angle_max_rad, angle_max_rad);
|
||
pitch_rad = constrain_float(pitch_rad, -angle_max_rad, angle_max_rad);
|
||
|
||
// call attitude controller
|
||
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_rad(roll_rad, pitch_rad, target_yaw_rate_rads);
|
||
|
||
// run the vertical position controller and set output throttle
|
||
pos_control->D_update_controller();
|
||
}
|
||
|
||
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received
|
||
void ModePosHold::update_pilot_lean_angle_rad(float &lean_angle_filtered_rad, float &lean_angle_raw_rad)
|
||
{
|
||
// if raw input is large or reversing the vehicle's lean angle immediately set the filtered angle to the new raw angle
|
||
if ((lean_angle_filtered_rad > 0.0 && lean_angle_raw_rad < 0.0) || (lean_angle_filtered_rad < 0.0 && lean_angle_raw_rad > 0.0) || (fabsf(lean_angle_raw_rad) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE_RAD)) {
|
||
lean_angle_filtered_rad = lean_angle_raw_rad;
|
||
} else {
|
||
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease
|
||
const float brake_rate_step_rad = radians((float)g.poshold_brake_rate_degs) * G_Dt;
|
||
if (lean_angle_filtered_rad > 0.0) {
|
||
// reduce the filtered lean angle at 1.25% per step or the brake rate (whichever is faster).
|
||
lean_angle_filtered_rad -= MAX(lean_angle_filtered_rad * POSHOLD_SMOOTH_RATE_FACTOR, brake_rate_step_rad);
|
||
// do not let the filtered angle fall below the pilot's input lean angle.
|
||
// the above line pulls the filtered angle down and the below line acts as a catch
|
||
lean_angle_filtered_rad = MAX(lean_angle_filtered_rad, lean_angle_raw_rad);
|
||
} else {
|
||
lean_angle_filtered_rad += MAX(-lean_angle_filtered_rad * POSHOLD_SMOOTH_RATE_FACTOR, brake_rate_step_rad);
|
||
lean_angle_filtered_rad = MIN(lean_angle_filtered_rad, lean_angle_raw_rad);
|
||
}
|
||
}
|
||
}
|
||
|
||
// mix_controls - mixes two controls based on the mix_ratio
|
||
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly
|
||
float ModePosHold::mix_controls(float mix_ratio, float first_control, float second_control)
|
||
{
|
||
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f);
|
||
return mix_ratio * first_control + (1.0f - mix_ratio) * second_control;
|
||
}
|
||
|
||
// update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain
|
||
// brake_angle is slewed with the wpnav.poshold_brake_rate_degs_degs and constrained by the wpnav.poshold_braking_angle_max
|
||
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity)
|
||
void ModePosHold::update_brake_angle_from_velocity(float &brake_angle_rad, float velocity_ms)
|
||
{
|
||
// slew limit per step (rad)
|
||
const float brake_delta_rad = radians((float)g.poshold_brake_rate_degs) * G_Dt;
|
||
|
||
// velocity-shaped lean angle:
|
||
float lean_angle_rad = -brake.gain * velocity_ms * (1.0f + 5.0f / (fabsf(velocity_ms) + 0.60f));
|
||
|
||
// do not let lean_angle be too far from brake_angle
|
||
brake_angle_rad = constrain_float(lean_angle_rad, brake_angle_rad - brake_delta_rad, brake_angle_rad + brake_delta_rad);
|
||
|
||
// constrain final brake_angle
|
||
const float brake_angle_max_rad = cd_to_rad(g.poshold_brake_angle_max);
|
||
brake_angle_rad = constrain_float(brake_angle_rad, -brake_angle_max_rad, brake_angle_max_rad);
|
||
}
|
||
|
||
// initialise wind compensation estimate back to zero
|
||
void ModePosHold::init_wind_comp_estimate()
|
||
{
|
||
wind_comp_ne_mss.zero();
|
||
wind_comp_roll_rad = 0.0f;
|
||
wind_comp_pitch_rad = 0.0f;
|
||
}
|
||
|
||
// update_wind_comp_estimate - updates wind compensation estimate
|
||
// should be called at the maximum loop rate when loiter is engaged
|
||
void ModePosHold::update_wind_comp_estimate()
|
||
{
|
||
const uint32_t now_ms = AP_HAL::millis();
|
||
// check wind estimate start has not been delayed
|
||
if (now_ms - wind_comp_start_time_ms < POSHOLD_WIND_COMP_START_TIME_MS) {
|
||
return;
|
||
}
|
||
|
||
// check horizontal velocity is low
|
||
if (pos_control->get_vel_estimate_NED_ms().xy().length() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX_MS) {
|
||
return;
|
||
}
|
||
|
||
// get position controller accel target
|
||
const Vector3f& accel_target_ned_mss = pos_control->get_accel_target_NED_mss();
|
||
|
||
// update wind compensation in earth-frame lean angles
|
||
if (is_zero(wind_comp_ne_mss.x)) {
|
||
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
||
wind_comp_ne_mss.x = accel_target_ned_mss.x;
|
||
} else {
|
||
// low pass filter the position controller's lean angle output
|
||
wind_comp_ne_mss.x = (1.0f - TC_WIND_COMP) * wind_comp_ne_mss.x + TC_WIND_COMP * accel_target_ned_mss.x;
|
||
}
|
||
if (is_zero(wind_comp_ne_mss.y)) {
|
||
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
|
||
wind_comp_ne_mss.y = accel_target_ned_mss.y;
|
||
} else {
|
||
// low pass filter the position controller's lean angle output
|
||
wind_comp_ne_mss.y = (1.0f - TC_WIND_COMP) * wind_comp_ne_mss.y + TC_WIND_COMP * accel_target_ned_mss.y;
|
||
}
|
||
|
||
// limit acceleration
|
||
const float accel_lim_mss = tanf(POSHOLD_WIND_COMP_LEAN_PCT_MAX * copter.attitude_control->lean_angle_max_rad()) * GRAVITY_MSS;
|
||
const float wind_comp_ef_len = wind_comp_ne_mss.length();
|
||
if (!is_zero(accel_lim_mss) && (wind_comp_ef_len > accel_lim_mss)) {
|
||
wind_comp_ne_mss *= accel_lim_mss / wind_comp_ef_len;
|
||
}
|
||
}
|
||
|
||
// get_wind_comp_lean_angles_rad - retrieve wind compensation angles in body frame roll and pitch angles
|
||
// should be called at the maximum loop rate
|
||
void ModePosHold::get_wind_comp_lean_angles_rad(float &roll_angle_rad, float &pitch_angle_rad)
|
||
{
|
||
// convert earth frame desired accelerations to body frame roll and pitch lean angles
|
||
roll_angle_rad = atanf((-wind_comp_ne_mss.x * ahrs.sin_yaw() + wind_comp_ne_mss.y * ahrs.cos_yaw()) / GRAVITY_MSS);
|
||
pitch_angle_rad = atanf(-(wind_comp_ne_mss.x * ahrs.cos_yaw() + wind_comp_ne_mss.y * ahrs.sin_yaw()) / GRAVITY_MSS);
|
||
}
|
||
|
||
// roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
||
void ModePosHold::roll_controller_to_pilot_override()
|
||
{
|
||
const uint32_t now_ms = AP_HAL::millis();
|
||
roll_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
|
||
controller_to_pilot_start_time_roll_ms = now_ms;
|
||
// initialise pilot_roll_rad to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
||
pilot_roll_rad = 0.0f;
|
||
// store final controller output for mixing with pilot input
|
||
controller_final_roll_rad = roll_rad;
|
||
}
|
||
|
||
// pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis
|
||
void ModePosHold::pitch_controller_to_pilot_override()
|
||
{
|
||
const uint32_t now_ms = AP_HAL::millis();
|
||
pitch_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE;
|
||
controller_to_pilot_start_time_pitch_ms = now_ms;
|
||
// initialise pilot_pitch_rad to 0, wind_comp will be updated to compensate and update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value
|
||
pilot_pitch_rad = 0.0f;
|
||
// store final loiter outputs for mixing with pilot input
|
||
controller_final_pitch_rad = pitch_rad;
|
||
}
|
||
|
||
#endif
|