mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 19:25:37 +08:00
194 lines
4.6 KiB
Matlab
194 lines
4.6 KiB
Matlab
function [sys,x0,str,ts] = Book6142_Controller(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
global c b node
|
||
% 神经网络采用4 - 5 - 2结构
|
||
node = 5;
|
||
c = 1 * [-2 -1 -0 1 2;
|
||
-2 -1 -0 1 2;
|
||
-2 -1 -0 1 2;
|
||
-2 -1 -0 1 2]; % 高斯函数的中心点矢量 维度 IN * MID 4*5
|
||
b = 3 * ones(node,1); % 高斯函数的基宽 维度node * 1 5*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
sizes = simsizes;
|
||
sizes.NumContStates = node*2; %设置系统连续状态的变量 W V
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 6; %设置系统输出的变量
|
||
sizes.NumInputs = 8; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0.1 * ones(node*2,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c b node
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
% 角度跟踪指令
|
||
dqd1 = 0.1*pi*cos(0.5*pi*t);
|
||
dqd2 = 0.1*pi*sin(0.5*pi*t);
|
||
|
||
qd1 = u(1);
|
||
qd2 = u(2);
|
||
q1 = u(3);
|
||
q2 = u(4);
|
||
dq1 = u(5);
|
||
dq2 = u(6);
|
||
|
||
e1 = q1 - qd1; % e = q - qd
|
||
e2 = q2 - qd2;
|
||
de1 = dq1 - dqd1;
|
||
de2 = dq2 - dqd2;
|
||
|
||
% 参数的定义
|
||
v = 13.33;
|
||
a1 = 8.98;
|
||
a2 = 8.75;
|
||
g = 9.8;
|
||
gama = 20;
|
||
M = [v+a1+2*a2*cos(q2) a1+a2*cos(q2);
|
||
a1+a2*cos(q2) a1];
|
||
alph = 3;
|
||
kp = [alph^2 0; 0 alph^2];
|
||
kv = [2 * alph 0;0 2*alph];
|
||
Q = 50 * eye(4);
|
||
|
||
A = [zeros(2,2) eye(2,2); -kp -kv]; % 4*4
|
||
P = lyap(A' , Q); % 4*4
|
||
% B = [zeros(2,2); inv(M)]; % 4*2
|
||
B = [0 0;0 0;1 0;0 1];
|
||
k1 = 0.001;
|
||
|
||
Input = [e1; e2; de1; de2];
|
||
h = zeros(node , 1); %5*1矩阵
|
||
for i =1:node
|
||
h(i) = exp(-(norm(Input - c(:,i))^2) / (2*b(i)^2));
|
||
end
|
||
W = x(1:5); % 5*1
|
||
V = x(6:10);
|
||
|
||
method = 1;
|
||
|
||
% W权值的更新
|
||
if method == 1 % 自适应方法一
|
||
dw = gama * h * Input' * P * B;
|
||
for i = 1:node*2
|
||
sys(i) = dw(i);
|
||
end
|
||
else % 自适应方法二
|
||
dw = gama * h * Input' * P * B + k1 * gama * norm(Input) * [W V];
|
||
for i = 1:node*2
|
||
sys(i) = dw(i);
|
||
end
|
||
end
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c b node
|
||
% 角度跟踪指令
|
||
ddqd1 = -0.1*pi*0.5*pi*sin(0.5*pi*t);
|
||
ddqd2 = 0.1*pi*0.5*pi*cos(0.5*pi*t);
|
||
|
||
qd1 = u(1);
|
||
qd2 = u(2);
|
||
q1 = u(3);
|
||
q2 = u(4);
|
||
dq1 = u(5);
|
||
dq2 = u(6);
|
||
ddq1 = u(7);
|
||
ddq2 = u(8);
|
||
dqd1 = 0.1*pi*cos(0.5*pi*t);
|
||
dqd2 = 0.1*pi*sin(0.5*pi*t);
|
||
ddq = [ddq1; ddq2];
|
||
|
||
e1 = q1 - qd1; % e = q - qd
|
||
e2 = q2 - qd2;
|
||
de1 = dq1 - dqd1;
|
||
de2 = dq2 - dqd2;
|
||
|
||
% 参数的定义
|
||
v = 13.33;
|
||
a1 = 8.98;
|
||
a2 = 8.75;
|
||
g = 9.8;
|
||
d1 = 2;
|
||
d2 = 3;
|
||
d3 = 6;
|
||
alph = 3;
|
||
kp = [alph^2 0; 0 alph^2];
|
||
kv = [2 * alph 0;0 2*alph];
|
||
|
||
M = [v+a1+2*a2*cos(q2) a1+a2*cos(q2);
|
||
a1+a2*cos(q2) a1];
|
||
C = [-a2*dq2*sin(q2) -a2*(dq1 + dq2)*sin(q2);
|
||
a2*dq1*sin(q2) 0];
|
||
G = [15*g*cos(q1)+8.75*g*cos(q1+q2);
|
||
8.75*g*cos(q1+q2)];
|
||
deltam = 0.2*M;
|
||
deltac = 0.2*C;
|
||
deltag = 0.2*G;
|
||
|
||
Input = [e1; e2; de1; de2];
|
||
h = zeros(node , 1); %5*1矩阵
|
||
for i =1:node
|
||
h(i) = exp(-(norm(Input - c(:,i))^2) / (2*b(i)^2));
|
||
end
|
||
W = x(1:5); % 5*1
|
||
V = x(6:10);
|
||
|
||
% 神经网络的输出
|
||
fx1 = W' * h;
|
||
fx2 = V' * h;
|
||
|
||
% 干扰
|
||
d = d1 + d2 * norm([e1,e2]) + d3 * norm([de1, de2]);
|
||
ddqd = [ddqd1; ddqd2];
|
||
e = [e1; e2];
|
||
de = [de1; de2];
|
||
q = [q1; q2];
|
||
dq = [dq1; dq2];
|
||
f = deltam * ddq + deltac * dq + deltag + d;
|
||
|
||
some = 1;
|
||
if some == 1
|
||
tau = M * (ddqd - kv*de - kp*e) + C * dq + G - M * [fx1; fx2]; % RBF逼近未知干扰f
|
||
elseif some == 2
|
||
tau = M * (ddqd - kv*de - kp*e) + C * dq + G - f; % 精确补偿干扰项
|
||
else
|
||
tau = M * (ddqd - kv*de - kp*e) + C * dq + G ; % 不补偿干扰项
|
||
end
|
||
|
||
sys(1) = tau(1);
|
||
sys(2) = tau(2);
|
||
sys(3) = fx1;
|
||
sys(4) = fx2;
|
||
sys(5) = f(1);
|
||
sys(6) = f(2);
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|