Files
RBF_NeuralNetwork/Fixed_time_NNcontroller.m
2021-01-04 10:37:04 +08:00

266 lines
7.0 KiB
Matlab
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
function [sys,x0,str,ts] = Fixed_time_NNcontroller(t,x,u,flag)
% 以下程序是 基于RBF神经网络的直接鲁棒自适应控制
switch flag
case 0 %初始化
[sys,x0,str,ts]=mdlInitializeSizes;
case 1 %连续状态计算
sys=mdlDerivatives(t,x,u);
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
sys=[];
case 3 %输出信号计算
sys=mdlOutputs(t,x,u);
otherwise
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
global c1 b1 c2 b2 node gama1 gama2 xite belta lg
% 神经网络采用2-7-1结构
node = 7;
c1 = 0.5*[-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2]; % 高斯函数的中心点矢量 维度 IN * MID 2*7
b1 = 20; % 高斯函数的基宽 维度MID * 1 b的选择很重要 b越大 网路对输入的映射能力越大
gama1 = 10;
lg = 2;
xite = 20; % 控制器的参数
c2 = 1.8*[-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2;
-2 -1.5 -1 0 1 1.5 2]; % 高斯函数的中心点矢量 维度 IN * MID 2*7
b2 = 4; % 高斯函数的基宽 维度MID * 1 b的选择很重要 b越大 网路对输入的映射能力越大
gama2 = 0.01;
belta = 2;
sizes = simsizes;
sizes.NumContStates = node*6; %设置系统连续状态的变量
sizes.NumDiscStates = 0; %设置系统离散状态的变量
sizes.NumOutputs = 4; %设置系统输出的变量
sizes.NumInputs = 7; %设置系统输入的变量
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u则应该将本参数设置为1
sizes.NumSampleTimes = 1; % 模块采样周期的个数
% 需要的样本时间一般为1.
% 猜测为如果为n则下一时刻的状态需要知道前n个状态的系统状态
sys = simsizes(sizes);
x0 = 0.1*[ones(node*4,1); 2*ones(node*1,1);3*ones(node*1,1)]; % 系统初始状态变量 代表W和V向量
str = []; % 保留变量,保持为空
ts = [0 0]; % 采样时间[t1 t2] t1为采样周期如果取t1=-1则将继承输入信号的采样周期参数t2为偏移量一般取为0
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
global c1 b1 c2 b2 node gama1 gama2 xite belta lg
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
yd1 = 0.5*sin(pi*t);
dyd1 = 0.5*pi*cos(pi*t);
ddyd1 = -0.5*pi*pi*sin(pi*t);
yd2 = 0.5*sin(pi*t);
dyd2 = 0.5*pi*cos(pi*t);
ddyd2 = -0.5*pi*pi*sin(pi*t);
q1 = u(1);
q2 = u(2);
dq1 = u(3);
dq2 = u(4);
e1 = yd1 - q1;
e2 = yd2 - q2;
de1 = dyd1 - dq1;
de2 = dyd2 - dq2;
e = [e1;e2];
de = [de1;de2];
% 参数的定义
q = 3;
p = 5;
% 滑模面
s1 = e1 + 1/belta*abs(de1)^(p/q)*sign(de1);
s2 = e2 + 1/belta*abs(de2)^(p/q)*sign(de2);
s = [s1; s2];
coe1 = p/(belta*q)*de1^(p-q)^(1/q); % 必大于0
coe2 = p/(belta*q)*de2^(p-q)^(1/q); % 必大于0
Input = [q1;q2;dq1;dq2];
% --------------------------------------------- W权值的更新
hf1 = zeros(node , 1); %7*1矩阵
hf2 = zeros(node , 1); %7*1矩阵
for i =1:node
hf1(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2));
hf2(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2));
end
W1 = x(1:node); % 7*1矩阵
W2 = x(node+1:2*node); % 7*1矩阵
fx1 = W1' * hf1;
fx2 = W2' * hf2;
fx = [fx1; fx2]; % 2*1
dw_fx1 = -gama1 * s1 * coe1 * hf1; % 7*1矩阵
dw_fx2 = -gama1 * s2 * coe2 * hf2; % 7*1矩阵
for i = 1:node
sys(i) = dw_fx1(i);
sys(i+node) = dw_fx2(i);
end
% ------------------------------------------------- V权值的更新
hg11 = zeros(node , 1); %7*1矩阵
hg12 = zeros(node , 1); %7*1矩阵
hg21 = zeros(node , 1); %7*1矩阵
hg22 = zeros(node , 1); %7*1矩阵
for i =1:node
hg11(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg12(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg21(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg22(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
end
V11 = x(node*2+1:node*3);
V12 = x(node*3+1:node*4);
V21 = x(node*4+1:node*5);
V22 = x(node*5+1:node*6);
gx11 = V11' * hg11;
gx12 = V12' * hg12;
gx21 = V21' * hg21;
gx22 = V22' * hg22;
gx = [gx11 gx12; gx21 gx22];
% 控制器的设计
p1 = 2.9;
p2 = 0.76;
p3 = 0.87;
p4 = 3.04;
M = [p1+p2+2*p3*cos(q2) p2+p3*cos(q2);
p2+p3*cos(q2) p2];
% 控制器的设计
g = inv(M);
temp1 = -belta*q/p* (abs(de1)^(2-p/q)*sign(de1)) + fx(1) - (lg+xite)*sign(s1) - ddyd1;
temp2 = -belta*q/p* (abs(de2)^(2-p/q)*sign(de2)) + fx(2) - (lg+xite)*sign(s2) - ddyd2;
temp = [temp1; temp2];
tau = -inv(gx) * temp;
dw_g11 = -gama2 * s1 * coe1 * hg11 * tau(1);
dw_g12 = -gama2 * s1 * coe1 * hg12 * tau(1);
dw_g21 = -gama2 * s2 * coe2 * hg21 * tau(2);
dw_g22 = -gama2 * s2 * coe2 * hg22 * tau(2);
for i = 1 : node
sys(i+node*2) = dw_g11(i);
sys(i+node*3) = dw_g12(i);
sys(i+node*4) = dw_g21(i);
sys(i+node*5) = dw_g22(i);
end
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
global c1 b1 c2 b2 node gama1 gama2 xite belta lg
% 角度跟踪指令
yd1 = 0.5*sin(pi*t);
dyd1 = 0.5*pi*cos(pi*t);
ddyd1 = -0.5*pi*pi*sin(pi*t);
yd2 = 0.5*sin(pi*t);
dyd2 = 0.5*pi*cos(pi*t);
ddyd2 = -0.5*pi*pi*sin(pi*t);
q1 = u(1);
q2 = u(2);
dq1 = u(3);
dq2 = u(4);
e1 = yd1 - q1;
e2 = yd2 - q2;
de1 = dyd1 - dq1;
de2 = dyd2 - dq2;
e = [e1;e2];
de = [de1;de2];
ddyd = [ddyd1; ddyd2];
% 参数的定义
q = 3;
p = 5;
% 滑模面
s1 = e1 + 1/belta*abs(de1)^(p/q)*sign(de1);
s2 = e2 + 1/belta*abs(de2)^(p/q)*sign(de2);
s = [s1; s2];
Input = [q1;q2;dq1;dq2];
% ------------------------------------------- W权值
hf1 = zeros(node , 1); %7*1矩阵
hf2 = zeros(node , 1); %7*1矩阵
for i =1:node
hf1(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2));
hf2(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2));
end
W1 = x(1:node); % 7*1矩阵
W2 = x(node+1:2*node); % 7*1矩阵
coe1 = p/(belta*q)*de1^(p-q)^(1/q); % 必大于0
coe2 = p/(belta*q)*de2^(p-q)^(1/q); % 必大于0
fx1 = W1' * hf1;
fx2 = W2' * hf2;
fx = [fx1; fx2]; % 2*1
% ------------------------------------------- V权值
hg11 = zeros(node , 1); %7*1矩阵
hg12 = zeros(node , 1); %7*1矩阵
hg21 = zeros(node , 1); %7*1矩阵
hg22 = zeros(node , 1); %7*1矩阵
for i =1:node
hg11(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg12(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg21(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
hg22(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2));
end
V11 = x(node*2+1:node*3);
V12 = x(node*3+1:node*4);
V21 = x(node*4+1:node*5);
V22 = x(node*5+1:node*6);
gx11 = V11' * hg11;
gx12 = V12' * hg12;
gx21 = V21' * hg21;
gx22 = V22' * hg22;
gx = [gx11 gx12; gx21 gx22];
p1 = 2.9;
p2 = 0.76;
p3 = 0.87;
p4 = 3.04;
M = [p1+p2+2*p3*cos(q2) p2+p3*cos(q2);
p2+p3*cos(q2) p2];
% 控制器的设计
g = inv(M);
temp1 = -belta*q/p* (abs(de1)^(2-p/q)*sign(de1)) + fx(1) - (lg+xite)*sign(s1) - ddyd1;
temp2 = -belta*q/p* (abs(de2)^(2-p/q)*sign(de2)) + fx(2) - (lg+xite)*sign(s2) - ddyd2;
temp = [temp1; temp2];
tau = - inv(gx) * temp;
sys(1) = tau(1);
sys(2) = tau(2);
sys(3) = fx1;
sys(4) = fx2;