function [sys,x0,str,ts] = Fixed_time_NNcontroller(t,x,u,flag) % 以下程序是 基于RBF神经网络的直接鲁棒自适应控制 switch flag case 0 %初始化 [sys,x0,str,ts]=mdlInitializeSizes; case 1 %连续状态计算 sys=mdlDerivatives(t,x,u); case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定 sys=[]; case 3 %输出信号计算 sys=mdlOutputs(t,x,u); otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化 global c1 b1 c2 b2 node gama1 gama2 xite belta lg % 神经网络采用2-7-1结构 node = 7; c1 = 0.5*[-2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2]; % 高斯函数的中心点矢量 维度 IN * MID 2*7 b1 = 20; % 高斯函数的基宽 维度MID * 1 b的选择很重要 b越大 网路对输入的映射能力越大 gama1 = 10; lg = 2; xite = 20; % 控制器的参数 c2 = 1.8*[-2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2; -2 -1.5 -1 0 1 1.5 2]; % 高斯函数的中心点矢量 维度 IN * MID 2*7 b2 = 4; % 高斯函数的基宽 维度MID * 1 b的选择很重要 b越大 网路对输入的映射能力越大 gama2 = 0.01; belta = 2; sizes = simsizes; sizes.NumContStates = node*6; %设置系统连续状态的变量 sizes.NumDiscStates = 0; %设置系统离散状态的变量 sizes.NumOutputs = 4; %设置系统输出的变量 sizes.NumInputs = 7; %设置系统输入的变量 sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1 sizes.NumSampleTimes = 1; % 模块采样周期的个数 % 需要的样本时间,一般为1. % 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态 sys = simsizes(sizes); x0 = 0.1*[ones(node*4,1); 2*ones(node*1,1);3*ones(node*1,1)]; % 系统初始状态变量 代表W和V向量 str = []; % 保留变量,保持为空 ts = [0 0]; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0 function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数 global c1 b1 c2 b2 node gama1 gama2 xite belta lg % 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确 yd1 = 0.5*sin(pi*t); dyd1 = 0.5*pi*cos(pi*t); ddyd1 = -0.5*pi*pi*sin(pi*t); yd2 = 0.5*sin(pi*t); dyd2 = 0.5*pi*cos(pi*t); ddyd2 = -0.5*pi*pi*sin(pi*t); q1 = u(1); q2 = u(2); dq1 = u(3); dq2 = u(4); e1 = yd1 - q1; e2 = yd2 - q2; de1 = dyd1 - dq1; de2 = dyd2 - dq2; e = [e1;e2]; de = [de1;de2]; % 参数的定义 q = 3; p = 5; % 滑模面 s1 = e1 + 1/belta*abs(de1)^(p/q)*sign(de1); s2 = e2 + 1/belta*abs(de2)^(p/q)*sign(de2); s = [s1; s2]; coe1 = p/(belta*q)*de1^(p-q)^(1/q); % 必大于0 coe2 = p/(belta*q)*de2^(p-q)^(1/q); % 必大于0 Input = [q1;q2;dq1;dq2]; % --------------------------------------------- W权值的更新 hf1 = zeros(node , 1); %7*1矩阵 hf2 = zeros(node , 1); %7*1矩阵 for i =1:node hf1(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2)); hf2(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2)); end W1 = x(1:node); % 7*1矩阵 W2 = x(node+1:2*node); % 7*1矩阵 fx1 = W1' * hf1; fx2 = W2' * hf2; fx = [fx1; fx2]; % 2*1 dw_fx1 = -gama1 * s1 * coe1 * hf1; % 7*1矩阵 dw_fx2 = -gama1 * s2 * coe2 * hf2; % 7*1矩阵 for i = 1:node sys(i) = dw_fx1(i); sys(i+node) = dw_fx2(i); end % ------------------------------------------------- V权值的更新 hg11 = zeros(node , 1); %7*1矩阵 hg12 = zeros(node , 1); %7*1矩阵 hg21 = zeros(node , 1); %7*1矩阵 hg22 = zeros(node , 1); %7*1矩阵 for i =1:node hg11(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg12(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg21(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg22(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); end V11 = x(node*2+1:node*3); V12 = x(node*3+1:node*4); V21 = x(node*4+1:node*5); V22 = x(node*5+1:node*6); gx11 = V11' * hg11; gx12 = V12' * hg12; gx21 = V21' * hg21; gx22 = V22' * hg22; gx = [gx11 gx12; gx21 gx22]; % 控制器的设计 p1 = 2.9; p2 = 0.76; p3 = 0.87; p4 = 3.04; M = [p1+p2+2*p3*cos(q2) p2+p3*cos(q2); p2+p3*cos(q2) p2]; % 控制器的设计 g = inv(M); temp1 = -belta*q/p* (abs(de1)^(2-p/q)*sign(de1)) + fx(1) - (lg+xite)*sign(s1) - ddyd1; temp2 = -belta*q/p* (abs(de2)^(2-p/q)*sign(de2)) + fx(2) - (lg+xite)*sign(s2) - ddyd2; temp = [temp1; temp2]; tau = -inv(gx) * temp; dw_g11 = -gama2 * s1 * coe1 * hg11 * tau(1); dw_g12 = -gama2 * s1 * coe1 * hg12 * tau(1); dw_g21 = -gama2 * s2 * coe2 * hg21 * tau(2); dw_g22 = -gama2 * s2 * coe2 * hg22 * tau(2); for i = 1 : node sys(i+node*2) = dw_g11(i); sys(i+node*3) = dw_g12(i); sys(i+node*4) = dw_g21(i); sys(i+node*5) = dw_g22(i); end function sys = mdlOutputs(t,x,u) %产生(传递)系统输出 global c1 b1 c2 b2 node gama1 gama2 xite belta lg % 角度跟踪指令 yd1 = 0.5*sin(pi*t); dyd1 = 0.5*pi*cos(pi*t); ddyd1 = -0.5*pi*pi*sin(pi*t); yd2 = 0.5*sin(pi*t); dyd2 = 0.5*pi*cos(pi*t); ddyd2 = -0.5*pi*pi*sin(pi*t); q1 = u(1); q2 = u(2); dq1 = u(3); dq2 = u(4); e1 = yd1 - q1; e2 = yd2 - q2; de1 = dyd1 - dq1; de2 = dyd2 - dq2; e = [e1;e2]; de = [de1;de2]; ddyd = [ddyd1; ddyd2]; % 参数的定义 q = 3; p = 5; % 滑模面 s1 = e1 + 1/belta*abs(de1)^(p/q)*sign(de1); s2 = e2 + 1/belta*abs(de2)^(p/q)*sign(de2); s = [s1; s2]; Input = [q1;q2;dq1;dq2]; % ------------------------------------------- W权值 hf1 = zeros(node , 1); %7*1矩阵 hf2 = zeros(node , 1); %7*1矩阵 for i =1:node hf1(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2)); hf2(i) = exp(-(norm(Input - c1(:,i))^2) / (2*b1^2)); end W1 = x(1:node); % 7*1矩阵 W2 = x(node+1:2*node); % 7*1矩阵 coe1 = p/(belta*q)*de1^(p-q)^(1/q); % 必大于0 coe2 = p/(belta*q)*de2^(p-q)^(1/q); % 必大于0 fx1 = W1' * hf1; fx2 = W2' * hf2; fx = [fx1; fx2]; % 2*1 % ------------------------------------------- V权值 hg11 = zeros(node , 1); %7*1矩阵 hg12 = zeros(node , 1); %7*1矩阵 hg21 = zeros(node , 1); %7*1矩阵 hg22 = zeros(node , 1); %7*1矩阵 for i =1:node hg11(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg12(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg21(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); hg22(i) = exp(-(norm(Input - c2(:,i))^2) / (2*b2^2)); end V11 = x(node*2+1:node*3); V12 = x(node*3+1:node*4); V21 = x(node*4+1:node*5); V22 = x(node*5+1:node*6); gx11 = V11' * hg11; gx12 = V12' * hg12; gx21 = V21' * hg21; gx22 = V22' * hg22; gx = [gx11 gx12; gx21 gx22]; p1 = 2.9; p2 = 0.76; p3 = 0.87; p4 = 3.04; M = [p1+p2+2*p3*cos(q2) p2+p3*cos(q2); p2+p3*cos(q2) p2]; % 控制器的设计 g = inv(M); temp1 = -belta*q/p* (abs(de1)^(2-p/q)*sign(de1)) + fx(1) - (lg+xite)*sign(s1) - ddyd1; temp2 = -belta*q/p* (abs(de2)^(2-p/q)*sign(de2)) + fx(2) - (lg+xite)*sign(s2) - ddyd2; temp = [temp1; temp2]; tau = - inv(gx) * temp; sys(1) = tau(1); sys(2) = tau(2); sys(3) = fx1; sys(4) = fx2;