mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 19:25:37 +08:00
174 lines
4.0 KiB
Matlab
174 lines
4.0 KiB
Matlab
function [sys,x0,str,ts] = Book6332_Controller(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
global c b node
|
||
% 神经网络采用4 - 7 - 2结构 一个 4*7*2结构 输入[e1 e2 de1 de2] 对应输出 [tau1 tau2]
|
||
node = 7;
|
||
c = 1 * [-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5]; % 高斯函数的中心点矢量 维度 IN * MID 4*7
|
||
b = 10 * ones(node,1); % 高斯函数的基宽 维度node * 1 7*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
sizes = simsizes;
|
||
sizes.NumContStates = node*2; %设置系统连续状态的变量 W V
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 4; %设置系统输出的变量
|
||
sizes.NumInputs = 8; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0 * ones(node*2,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c b node
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
% 角度跟踪指令
|
||
dqd1 = cos(t);
|
||
dqd2 = cos(t);
|
||
|
||
qd1 = u(1);
|
||
qd2 = u(2);
|
||
q1 = u(3);
|
||
q2 = u(4);
|
||
dq1 = u(5);
|
||
dq2 = u(6);
|
||
|
||
e1 = q1 - qd1; % e = qd - q
|
||
e2 = q2 - qd2;
|
||
de1 = dq1 - dqd1;
|
||
de2 = dq2 - dqd2;
|
||
e = [e1; e2];
|
||
de = [de1 ; de2];
|
||
|
||
% 参数的定义
|
||
xite = 1500;
|
||
alpha = 20;
|
||
gama = 0.05;
|
||
|
||
input = [e; de];
|
||
h = zeros(node , 1); %7*1矩阵
|
||
for i =1:node
|
||
h(i) = exp(-(norm(input - c(:,i))^2) / (b(i)^2)); % 7*1
|
||
end
|
||
|
||
W = [x(1) x(2) x(3) x(4) x(5) x(6) x(7);
|
||
x(8) x(9) x(10) x(11) x(12) x(13) x(14)]'; % 7*2
|
||
|
||
x2_1 = de + alpha * e;
|
||
|
||
% 权值的自适应律
|
||
dw = -xite * x2_1 * h'; %
|
||
% dw = dw';
|
||
for i = 1:node
|
||
sys(i) = dw(1,i);
|
||
sys(i+7) = dw(2,i);
|
||
end
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c b node
|
||
% 角度跟踪指令
|
||
% dqd1 = cos(t);
|
||
% dqd2 = cos(t);
|
||
ddqd1 = -sin(t);
|
||
ddqd2 = -sin(t);
|
||
|
||
qd1 = u(1);
|
||
qd2 = u(2);
|
||
q1 = u(3);
|
||
q2 = u(4);
|
||
dq1 = u(5);
|
||
dq2 = u(6);
|
||
ddq1 = u(7);
|
||
ddq2 = u(8);
|
||
dqd1 = cos(t);
|
||
dqd2 = cos(t);
|
||
ddq = [ddq1; ddq2];
|
||
ddqd = [ddqd1; ddqd2];
|
||
dqd = [dqd1; dqd2];
|
||
|
||
e1 = q1 - qd1; % e = q - qd
|
||
e2 = q2 - qd2;
|
||
de1 = dq1 - dqd1;
|
||
de2 = dq2 - dqd2;
|
||
e = [e1; e2];
|
||
de = [de1; de2];
|
||
|
||
% 参数的定义
|
||
xite = 1500;
|
||
alpha = 20;
|
||
gama = 0.05;
|
||
m1 = 1;
|
||
m2 = 1.5;
|
||
r1 = 1;
|
||
r2 = 0.8;
|
||
M11 = (m1 + m2)*r1^2 + m2*r2^2 + 2*m2*r1*r2*cos(q2);
|
||
M12 = m2*r2^2 + m2*r1*r2*cos(q2);
|
||
M21 = M12;
|
||
M22 = m2 * r2^2;
|
||
V12 = m2*r1*sin(q2);
|
||
G1 = (m1+m2)*r1*cos(q2) + m2*r2*cos(q1+q2);
|
||
G2 = m2*r2*cos(q1+q2);
|
||
|
||
M = [M11 M12;
|
||
M21 M22];
|
||
V = [-V12*dq2 -V12*(dq1+dq2);
|
||
V12*q1 0];
|
||
G = [G1; G2];
|
||
D = [10*dq1 + 30*sign(dq1); 10*dq2 + 30*sign(dq2)];
|
||
|
||
input = [e; de];
|
||
h = zeros(node , 1); %7*1矩阵
|
||
|
||
for i =1:node
|
||
h(i) = exp(-(norm(input - c(:,i))^2) / (b(i)^2)); % 7*1
|
||
end
|
||
W = [x(1) x(2) x(3) x(4) x(5) x(6) x(7);
|
||
x(8) x(9) x(10) x(11) x(12) x(13) x(14)]'; % 7*2
|
||
% 网络输出
|
||
fx = W' * h;
|
||
|
||
omiga = M * alpha * de + V * alpha * e;
|
||
|
||
x2_1 = de + alpha * e;
|
||
|
||
% 反馈控制律
|
||
ut = -omiga - 1/(2*gama^2) * x2_1 + fx - 1/2*x2_1;
|
||
|
||
tau = ut + M * ddqd + V * dqd + G;
|
||
|
||
sys(1) = tau(1);
|
||
sys(2) = tau(2);
|
||
sys(3) = fx(1);
|
||
sys(4) = fx(2);
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|