mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 11:09:47 +08:00
105 lines
3.1 KiB
Matlab
105 lines
3.1 KiB
Matlab
function [sys,x0,str,ts] = Book321_controller(t,x,u,flag)
|
||
% RBF神经网络自适应控制刘金琨例题3.2.1仿真
|
||
% 基于RBF神经网络的模型参考自适应控制
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case {1,2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
sizes = simsizes;
|
||
sizes.NumContStates = 0; %设置系统连续状态的变量
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 1; %设置系统输出的变量
|
||
sizes.NumInputs = 3; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = []; % 系统初始状态变量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1 = -1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
% 权值初值的选择
|
||
% 神经网络PID控制器 2-7-1结构
|
||
global W_new W_past C_new C_past B_new B_past yk_new yk_past ut_new ut_past some
|
||
C_new = [-3 -2 -1 0 1 2 3;
|
||
-3 -2 -1 0 1 2 3;
|
||
-3 -2 -1 0 1 2 3]; %3*7 中心矢量
|
||
C_past = C_new;
|
||
B_new = [2 2 2 2 2 2 2]; %1*7 基宽度参数
|
||
B_past = B_new;
|
||
% W_new = rand(1,7); %权值取0-1的随机值
|
||
W_new = [-0.0316 -0.0421 -0.0318 0.0068 0.0454 -0.0381 -0.0381];
|
||
W_past = W_new;
|
||
yk_new = 0;
|
||
yk_past = yk_new;
|
||
ut_new = 0;
|
||
ut_past = ut_new;
|
||
some = [0 0 0]';
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global W_new W_past C_new C_past B_new B_past yk_new yk_past ut_new ut_past some
|
||
% if t>0
|
||
% 神经网络PID控制器 2-6-1结构
|
||
alpha = 0.05; %惯性系数
|
||
xite = 0.35; %学习效率
|
||
IN = 3;
|
||
Mid = 7;
|
||
Out = 1;
|
||
|
||
yd = u(1);
|
||
ec = u(2);
|
||
yk_new = u(3);
|
||
|
||
h = zeros(Mid, 1);
|
||
for j = 1:Mid
|
||
h(j) = exp(-(norm(some - C_new(:,j))^2/(2* B_new(j)^2))); %7*1矩阵 径向基函数
|
||
end
|
||
% RBF的网络输出ym
|
||
ut_new = W_new * h;
|
||
dyu = sign((yk_new - yk_past)/(ut_new - ut_past));
|
||
|
||
% 权值的调整 更新值
|
||
deltaW = zeros(1,Mid);
|
||
for i = 1:Mid
|
||
deltaW(i) = xite * ec * dyu * h(i);
|
||
end
|
||
W_new = W_new + deltaW + alpha*(W_new - W_past);
|
||
|
||
% 基宽带参数b的修正
|
||
% deltab = zeros(1,Mid);
|
||
% for i = 1:Mid
|
||
% deltab(i) = xite * dyu * W_new(i) * h(i) * (norm(some - C_new(:,i))^2 / B_new(i)^3);
|
||
% B_new(i) = B_new(i) + deltab(i) + alpha*(B_new(i) - B_past(i));
|
||
% end
|
||
|
||
% 中心矢量c的修正
|
||
% deltac = zeros(IN, Mid);
|
||
% for i = 1:IN
|
||
% for j = 1:Mid
|
||
% deltac(i,j) = xite * dyu * W_new(j) * h(j) * ((some(i) - C_new(i,j)) / B_new(j)^2);
|
||
% C_new(i,j) = C_new(i,j) + deltac(i,j) + alpha*(C_new(i,j) - C_past(i,j));
|
||
% end
|
||
% end
|
||
|
||
sys(1) = ut_new;
|
||
some = [u(1); u(2); u(3)];
|
||
W_past = W_new;
|
||
B_past = B_new;
|
||
C_past = C_new;
|
||
ut_past = ut_new;
|
||
yk_past = yk_new;
|
||
% else
|
||
% sys(1) = ut_new;
|
||
% end
|
||
|
||
|
||
|