function [sys,x0,str,ts] = Book321_controller(t,x,u,flag) % RBF神经网络自适应控制刘金琨例题3.2.1仿真 % 基于RBF神经网络的模型参考自适应控制 switch flag case 0 %初始化 [sys,x0,str,ts]=mdlInitializeSizes; case {1,2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定 sys=[]; case 3 %输出信号计算 sys=mdlOutputs(t,x,u); otherwise DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag)); end function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化 sizes = simsizes; sizes.NumContStates = 0; %设置系统连续状态的变量 sizes.NumDiscStates = 0; %设置系统离散状态的变量 sizes.NumOutputs = 1; %设置系统输出的变量 sizes.NumInputs = 3; %设置系统输入的变量 sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1 sizes.NumSampleTimes = 0; % 模块采样周期的个数 % 需要的样本时间,一般为1. % 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态 sys = simsizes(sizes); x0 = []; % 系统初始状态变量 str = []; % 保留变量,保持为空 ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1 = -1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0 % 权值初值的选择 % 神经网络PID控制器 2-7-1结构 global W_new W_past C_new C_past B_new B_past yk_new yk_past ut_new ut_past some C_new = [-3 -2 -1 0 1 2 3; -3 -2 -1 0 1 2 3; -3 -2 -1 0 1 2 3]; %3*7 中心矢量 C_past = C_new; B_new = [2 2 2 2 2 2 2]; %1*7 基宽度参数 B_past = B_new; % W_new = rand(1,7); %权值取0-1的随机值 W_new = [-0.0316 -0.0421 -0.0318 0.0068 0.0454 -0.0381 -0.0381]; W_past = W_new; yk_new = 0; yk_past = yk_new; ut_new = 0; ut_past = ut_new; some = [0 0 0]'; function sys = mdlOutputs(t,x,u) %产生(传递)系统输出 global W_new W_past C_new C_past B_new B_past yk_new yk_past ut_new ut_past some % if t>0 % 神经网络PID控制器 2-6-1结构 alpha = 0.05; %惯性系数 xite = 0.35; %学习效率 IN = 3; Mid = 7; Out = 1; yd = u(1); ec = u(2); yk_new = u(3); h = zeros(Mid, 1); for j = 1:Mid h(j) = exp(-(norm(some - C_new(:,j))^2/(2* B_new(j)^2))); %7*1矩阵 径向基函数 end % RBF的网络输出ym ut_new = W_new * h; dyu = sign((yk_new - yk_past)/(ut_new - ut_past)); % 权值的调整 更新值 deltaW = zeros(1,Mid); for i = 1:Mid deltaW(i) = xite * ec * dyu * h(i); end W_new = W_new + deltaW + alpha*(W_new - W_past); % 基宽带参数b的修正 % deltab = zeros(1,Mid); % for i = 1:Mid % deltab(i) = xite * dyu * W_new(i) * h(i) * (norm(some - C_new(:,i))^2 / B_new(i)^3); % B_new(i) = B_new(i) + deltab(i) + alpha*(B_new(i) - B_past(i)); % end % 中心矢量c的修正 % deltac = zeros(IN, Mid); % for i = 1:IN % for j = 1:Mid % deltac(i,j) = xite * dyu * W_new(j) * h(j) * ((some(i) - C_new(i,j)) / B_new(j)^2); % C_new(i,j) = C_new(i,j) + deltac(i,j) + alpha*(C_new(i,j) - C_past(i,j)); % end % end sys(1) = ut_new; some = [u(1); u(2); u(3)]; W_past = W_new; B_past = B_new; C_past = C_new; ut_past = ut_new; yk_past = yk_new; % else % sys(1) = ut_new; % end