Files
RBF-aPID-Controller/CPP_Implementation/rbf_model.cpp
2024-10-08 21:28:09 -07:00

105 lines
3.3 KiB
C++

#include "rbf_model.h"
/**
* @brief Constructor to initialize the RBF model.
*/
RBFModel::RBFModel(int n_centers, int input_dim, double sigma, bool random_centers)
: n_centers(n_centers), input_dim(input_dim), sigma(sigma) {
centers = new double*[n_centers]; // Allocate memory for centers
weights = new double[n_centers]; // Allocate memory for weights
// Check if memory allocation was successful
if (!centers || !weights) {
if (centers) delete[] centers; // Clean up if centers allocation was successful
return; // Indicate failure (Use whatever exception handling you have)
}
// Initialize centers and weights
for (int i = 0; i < n_centers; ++i) {
centers[i] = new double[input_dim]; // Allocate memory for each center
if (random_centers) {
for (int j = 0; j < input_dim; ++j) {
centers[i][j] = static_cast<double>(rand()) / RAND_MAX; // Random centers
}
} else {
for (int j = 0; j < input_dim; ++j) {
centers[i][j] = static_cast<double>(i); // Fixed centers
}
}
weights[i] = 0.0; // Initialize weights to zero
}
}
/**
* @brief Destructor to free allocated memory.
*/
RBFModel::~RBFModel() {
for (int i = 0; i < n_centers; ++i) {
delete[] centers[i]; // Free memory for each center inside centers
}
delete[] centers; // Free memory for centers
delete[] weights; // Free memory for weights
}
/**
* @brief Gaussian function used in RBF evaluation.
*/
double RBFModel::gaussian(const double* input, const double* center) {
double norm = 0.0;
for (int i = 0; i < input_dim; ++i) {
norm += pow(input[i] - center[i], 2);
}
return exp(-0.5 * norm / (sigma * sigma));
}
/**
* @brief Predict the RBF output for a given input.
*/
double RBFModel::predict(const double* input) {
double output = 0.0;
for (int i = 0; i < n_centers; ++i) {
output += weights[i] * gaussian(input, centers[i]);
}
return output;
}
/**
* @brief Adapt weights based on the error and learning rate.
*/
void RBFModel::adapt(double error, double learning_rate, const double* input) {
for (int i = 0; i < n_centers; ++i) {
double influence = gaussian(input, centers[i]); // Calculate influence based on input
weights[i] += learning_rate * error * influence; // Update weight based on error and influence
}
}
/**
* @brief Train the RBF model using recorded data.
*/
void RBFModel::train(const double* inputs, const double* targets, int n_samples, int epochs, double learning_rate) {
for (int iter = 0; iter < epochs; ++iter) {
for (int sample = 0; sample < n_samples; ++sample) {
double output = predict(&inputs[sample * input_dim]);
double error = targets[sample] - output;
adapt(error, learning_rate, &inputs[sample * input_dim]); // Adapt weights based on the error
}
}
}
/**
* @brief Get the weight at a specific index.
*/
double RBFModel::get_weight(int index) const {
if (index < 0 || index >= n_centers) return 0.0;
return weights[index];
}
/**
* @brief Set the weight at a specific index.
*/
void RBFModel::set_weight(int index, double value) {
if (index < 0 || index >= n_centers) return;
weights[index] = value;
}