Files
2024-10-07 23:36:01 -07:00

75 lines
1.9 KiB
Python

import numpy as np
class AdaptivePIDNP:
""" PID class implemented for numpy integration.
...
Attributes
----------
Kp : float64
Proportional gain.
Ki : float64
Integral gain.
Kd : float64
Derivative gain.
rbf_network : RBFNetwork object
RBF network class instance.
Methods
-------
update(target, measured_value, dt):
Updates the control signal.
"""
def __init__(self, Kp, Ki, Kd, rbf_network):
""" Constructs PID gains and RBF network.
Parameters
----------
Kp : float64
Proportional gain.
Ki : float64
Integral gain.
Kd : float64
Derivative gain.
rbf_network : RBFNetwork object
RBF network class instance.
"""
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.rbf_network = rbf_network
self.prev_err = 0
self.error = 0
self.integral = 0
self.derivative = 0
def update(self, target, measured_value, dt):
""" Update the control signal according to error and adapt with RBF
network predictions.
Parameters
----------
target : float64
Target setpoint.
measured_value : float64
Actual value.
dt : float64
Timestep.
Returns
-------
Control signal.
"""
self.error = target - measured_value
self.integral += self.error * dt
self.derivative = (self.error - self.prev_err) / dt
u = (self.Kp * self.error) + (self.Ki * self.integral) + (self.Kd*self.derivative)
gain_adapt = self.rbf_network.predict(np.array([self.error, self.integral, self.derivative]))
u += gain_adapt
self.prev_err = self.error
return u