mirror of
https://github.com/igv/FSRCNN-TensorFlow.git
synced 2025-12-16 01:24:28 +08:00
Almost ready
This commit is contained in:
11
model.py
11
model.py
@@ -17,9 +17,9 @@ import tensorflow as tf
|
||||
from PIL import Image
|
||||
import pdb
|
||||
|
||||
|
||||
# Based on http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
|
||||
class FSRCNN(object):
|
||||
|
||||
|
||||
def __init__(self, sess, config):
|
||||
self.sess = sess
|
||||
self.fast = config.fast
|
||||
@@ -36,12 +36,13 @@ class FSRCNN(object):
|
||||
self.params = config.params
|
||||
|
||||
# Different image/label sub-sizes for different scaling factors x2, x3, x4
|
||||
scale_factors = [[10, 20], [11, 21], [6, 24]]
|
||||
scale_factors = [[14, 20], [11, 21], [10, 24]]
|
||||
self.image_size, self.label_size = scale_factors[self.scale - 2]
|
||||
# Testing uses different strides to ensure sub-images line up correctly
|
||||
if not self.train:
|
||||
self.stride = [10, 7, 6][self.scale - 2]
|
||||
|
||||
# Different model layer counts/filter sizes for FSRCNN vs FSRCNN-s (fast)
|
||||
# Different model layer counts and filter sizes for FSRCNN vs FSRCNN-s (fast), (s, d, m) in paper
|
||||
model_params = [[56, 12, 4], [32, 5, 1]]
|
||||
self.model_params = model_params[self.fast]
|
||||
|
||||
@@ -57,7 +58,7 @@ class FSRCNN(object):
|
||||
# Batch size differs in training vs testing
|
||||
self.batch = tf.placeholder(tf.int32, shape=[], name='batch')
|
||||
|
||||
# FSCRNN-s (fast) has smaller filters and less layers but can achieve realtime performance
|
||||
# FSCRNN-s (fast) has smaller filters and less layers but can achieve faster performance
|
||||
s, d, m = self.model_params
|
||||
|
||||
expand_weight, deconv_weight = 'w{}'.format(m + 3), 'w{}'.format(m + 4)
|
||||
|
||||
Reference in New Issue
Block a user