Added a lot of New Stuff

This commit is contained in:
Nikhil Nair
2022-03-13 19:38:28 +05:30
parent 1bf53b9c5a
commit 0cfc443ab3
7 changed files with 885 additions and 44 deletions

Binary file not shown.

View File

@@ -32,6 +32,7 @@ class NeuralNetwork:
# Description : Takes in the state vector at a given time step and computes the output vector for the next layer
output = 1/(1 + np.exp(self.wh.dot(self.X)) )

View File

@@ -5,11 +5,15 @@ import math
class TwoAreaPS:
def __init__(self, Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3):
def __init__(self, Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3, yt_1_,yt_2_,yt_3_):
self.yt_1 = yt_1
self.yt_2 = yt_2
self.yt_3 = yt_3
self.yt_1_a1 = yt_1
self.yt_2_a1 = yt_2
self.yt_3_a1 = yt_3
self.yt_1_a2 = yt_1_
self.yt_2_a2 = yt_2_
self.yt_3_a2 = yt_3_
self.Xprev = np.zeros( (7,1) )
self.Y = np.zeros( (2,1) )
@@ -57,8 +61,9 @@ class TwoAreaPS:
[0,0,0,0],
[0,1/Tg,0,-Kp/Tp] ])
self.C = np.array( [ [ self.beta1 , 0 , 0 ,1 , 0, 0 , 0 ] ])
# [ 0 , 0, 0, 1, self.beta2, 0, 0 ] ] )
self.C = np.array( [ [ self.beta1 , 0 , 0 ,1 , 0, 0 , 0 ] ,
[ 0 , 0, 0, 1, self.beta2, 0, 0 ] ,
[ 0 , 0, 0, 1, 0, 0, 0 ] ] )
# Calculating Discrete Coefs
@@ -71,14 +76,13 @@ class TwoAreaPS:
def Output(self,Ut):
self.yt_1 , self.yt_2 , self.yt_3 = self.Y[0,0], self.yt_1, self.yt_2
self.yt_1_a1 , self.yt_2_a1 , self.yt_3_a1 = self.Y[0,0], self.yt_1_a1, self.yt_2_a1
self.yt_1_a2 , self.yt_2_a2 , self.yt_3_a2 = self.Y[1,0], self.yt_1_a2, self.yt_2_a2
self.X = np.dot( self.Ad, self.Xprev ) + np.dot( self.Bd, Ut )
self.Y = np.dot( self.C, self.Xprev)
# print("Chooth :" , self.Y)
self.Xprev = self.X
if (math.isnan(self.Y[0,0])):

View File

@@ -0,0 +1,276 @@
import matplotlib.pyplot as plt
import numpy as np
from numpy.lib.function_base import append
import warnings
warnings.filterwarnings("ignore")
from two_area import *
import neuralnetwork
def y(yd):
PL1 = 0
PL2 = 0
# rbf = RBF.RBF( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.95)
nn1 = neuralnetwork.NeuralNetwork( aw = 0.000065, av = 0.022, au = 0.025 , gamma = 0.98)
nn2 = neuralnetwork.NeuralNetwork( aw = 0.000065, av = 0.022, au = 0.025 , gamma = 0.98)
# av=0.021,au = 0.025, aw = 0.0003asig = 0.01 gamma = 0.9
# ( aw = 0.0003, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00474099
# ( aw = 0.00008, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00037917 Settling Time ~ 70
# ( aw = 0.00007, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00033166 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00031556 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.98) ----> Steady State Error : 0.00118022
Tg = 0.08
Tp = 20
Tt = 0.3
Kp = 120
T12 = 0.545/(2*np.pi)
a12 = -1
R = 5
T = dt = 1/80
beta1 = 0.425
beta2 = 0.425
yt_1 = 0
yt_2 = 0
yt_3 = 0
yt_1_ = 0
yt_2_ = 0
yt_3_ = 0
System = TwoAreaPS( Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3 , yt_1_ ,yt_2_,yt_3_ )
initial_states = [ yt_1, yt_2 , yt_3 , yt_1_ , yt_2_ , yt_3_]
plot_data = {"ut1":[] , "pl1" : [] , "delF1":[] , "ut2":[] , "pl2" : [] , "delF2":[] , "time" : []}
# KP1 = 1.32579169e-07
# KI1 = 3.09193550e-04
# KD1 = 1.91587817e-08
# KP2 = 1.18316184e-07
# KI2 = 2.70082882e-04
# KD2 = 1.85194296e-08
KP1 = -1.35204764e-06
KI1 = 4.30298026e-04
KD1 = -5.84913513e-07
KP2 = -1.16255511e-06
KI2 = 2.09594022e-04
KD2 = -5.96951511e-07
ut_1 = 0
ut_2 = 0
t = 200
y=[]
x=[]
for i in range(0, int(t/dt) ):
# print(System.yt_1)
e_t_a1 = 0 - System.yt_1_a1
del_y_a1 = System.yt_1_a1 - System.yt_2_a1
del2_y_a1 = System.yt_1_a1 - 2*System.yt_2_a1 + System.yt_3_a1
e_t_a2 = 0 - System.yt_1_a2
del_y_a2 = System.yt_1_a2 - System.yt_2_a2
del2_y_a2 = System.yt_1_a2 - 2*System.yt_2_a2 + System.yt_3_a2
# ut_1 = ut_1 + 0.00043*e_t - 0.01*del_y - 0*del2_y
ut_1 = ut_1 + KI1*e_t_a1 - KP1*del_y_a1 - KD1*del2_y_a1
ut_2 = ut_2 + KI2*e_t_a2 - KP2*del_y_a2 - KD2*del2_y_a2
plot_data["ut1"].append(ut_1)
plot_data["ut2"].append(ut_2)
# Load Graph 1
# if( i*dt >= 40 ):
# PL = 0.2
# elif ( i*dt >= 10 ):
# PL = 0.8
# else:
# PL = 0
# Load Graph 2
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# else:
# PL = 0.6
# Load Graph 3
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# elif ( i*dt <= 60 ):
# PL = 0.6
# elif ( i*dt <= 70 ):
# PL = 0.5
# elif ( i*dt <= 80 ):
# PL = 0.4
# elif ( i*dt <= 90 ):
# PL = 0.3
# elif ( i*dt <= 100 ):
# PL = 0.2
# else:
# PL = 0.1
# Load Graph 4
# PL = np.random.normal(0.5,0.1)
# Load Graph 5
if( (i*dt)%10==0 and (i*dt)!=0 ):
PL1 = np.random.normal(0.5,0.1)
PL2 = np.random.normal(0.5,0.1)
# Load Graph 6
# if ( i*dt > 50 and i*dt <130):
# PL1 = 0.5
# else:
# PL1 = 0
# if ( i*dt > 20 and i*dt <70):
# PL2 = 0.5
# else:
# PL2 = 0
plot_data["pl1"].append(PL1)
plot_data["pl2"].append(PL2)
Ut = [ [ut_1] , [ut_2] , [ PL1] , [PL2] ]
System.Output(Ut)
plot_data["delF1"].append(System.Y[0,0])
plot_data["delF2"].append(System.Y[1,0])
plot_data["time"].append(i*dt)
print("The steady state error of area 1 system is : ", System.Y[0][0])
print("The steady state error of area 2 system is : ", System.Y[1][0])
return plot_data,initial_states
if __name__=="__main__":
yd = [0 for i in range(200*80) ]
## Generate Reference array here
plot_data,i = y(yd)
plt.subplot(2,3,1)
plt.plot(plot_data["time"],plot_data["pl1"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.subplot(2,3,2)
plt.plot(plot_data["time"],plot_data["ut1"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,3)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF1"],label ="Output")
plt.title( " Initial States y(t-1) , y(t-2) and y(t-3) are " + str(i[0]) + ", " + str(i[1]) +" and "+ str(i[2]) )
plt.legend()
plt.subplot(2,3,4)
plt.plot(plot_data["time"],plot_data["pl2"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.subplot(2,3,5)
plt.plot(plot_data["time"],plot_data["ut2"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,6)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF2"],label ="Output")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.show()

View File

@@ -2,14 +2,34 @@ import matplotlib.pyplot as plt
import numpy as np
from numpy.lib.function_base import append
import warnings
warnings.filterwarnings("ignore")
from two_area import *
import RBF
def y(yd):
rbf = RBF.RBF( aw = 0.0003, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9)
PL1 = 0
PL2 = 0
# rbf = RBF.RBF( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.95)
nn1 = RBF.RBF( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.95)
nn2 = RBF.RBF( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.95)
# av=0.021,au = 0.025, aw = 0.0003asig = 0.01 gamma = 0.9
# ( aw = 0.0003, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00474099
# ( aw = 0.00008, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00037917 Settling Time ~ 70
# ( aw = 0.00007, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00033166 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00031556 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.98) ----> Steady State Error : 0.00118022
Tg = 0.08
@@ -18,8 +38,8 @@ def y(yd):
Kp = 120
T12 = 0.545/(2*np.pi)
a12 = -1
R = 2.4
T = dt = 1/400
R = 5
T = dt = 1/80
beta1 = 0.425
beta2 = 0.425
@@ -27,22 +47,38 @@ def y(yd):
yt_2 = 0
yt_3 = 0
System = TwoAreaPS( Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3 )
yt_1_ = 0
yt_2_ = 0
yt_3_ = 0
System = TwoAreaPS( Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3 , yt_1_ ,yt_2_,yt_3_ )
initial_states = [ yt_1, yt_2 , yt_3]
initial_states = [ yt_1, yt_2 , yt_3 , yt_1_ , yt_2_ , yt_3_]
plot_data = {"ut":[] , "pl" : [] , "delF":[] , 'KI' : [], 'KP' : [] , 'KD' : [] , "time" : []}
plot_data = {"ut1":[] , "pl1" : [] , "delF1":[] , 'KI1' : [], 'KP1' : [] , 'KD1' : [] ,
"ut2":[] , "pl2" : [] , "delF2":[] , 'KI2' : [], 'KP2' : [] , 'KD2' : [] , "time" : []}
Ki = 0
Kd = 0
Kp = 0
ut_1 = 0
t = 100
nn1.K[0] = 13
nn1.K[1] = 1132
nn1.K[2] = 32
nn2.K[0] = 13
nn2.K[1] = 1132
nn2.K[2] = 32
ut_1 = 0
ut_2 = 0
t = 200
y=[]
x=[]
@@ -51,38 +87,141 @@ def y(yd):
for i in range(0, int(t/dt) ):
# print(System.yt_1)
e_t = 0 - System.yt_1
del_y = System.yt_1 - System.yt_2
del2_y = System.yt_1 - 2*System.yt_2 + System.yt_3
e_t_a1 = 0 - System.yt_1_a1
del_y_a1 = System.yt_1_a1 - System.yt_2_a1
del2_y_a1 = System.yt_1_a1 - 2*System.yt_2_a1 + System.yt_3_a1
rbf.X[:,0] = [ e_t , -del_y , -del2_y]
rbf.HiddenLayer()
rbf.OutputLayer()
nn1.X[:,0] = [ e_t_a1 , -del_y_a1 , -del2_y_a1]
nn1.HiddenLayer()
nn1.OutputLayer()
e_t_a2 = 0 - System.yt_1_a2
del_y_a2 = System.yt_1_a2 - System.yt_2_a2
del2_y_a2 = System.yt_1_a2 - 2*System.yt_2_a2 + System.yt_3_a2
nn2.X[:,0] = [ e_t_a2 , -del_y_a2 , -del2_y_a2]
nn2.HiddenLayer()
nn2.OutputLayer()
# ut_1 = ut_1 + 0.00043*e_t - 0.01*del_y - 0*del2_y
ut_1 = ut_1 + rbf.K[1]*e_t - rbf.K[0]*del_y - rbf.K[2]*del2_y
plot_data["ut"].append(ut_1)
ut_1 = ut_1 + nn1.K[1]*e_t_a1 - nn1.K[0]*del_y_a1 - nn1.K[2]*del2_y_a1
ut_2 = ut_2 + nn2.K[1]*e_t_a2 - nn2.K[0]*del_y_a2 - nn2.K[2]*del2_y_a2
plot_data["ut1"].append(ut_1)
plot_data["ut2"].append(ut_2)
# Load Graph 1
# if( i*dt >= 40 ):
# PL = 0.2
# elif ( i*dt >= 10 ):
# PL = 0.8
# else:
# PL = 0
# Load Graph 2
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# else:
# PL = 0.6
# Load Graph 3
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# elif ( i*dt <= 60 ):
# PL = 0.6
# elif ( i*dt <= 70 ):
# PL = 0.5
# elif ( i*dt <= 80 ):
# PL = 0.4
# elif ( i*dt <= 90 ):
# PL = 0.3
# elif ( i*dt <= 100 ):
# PL = 0.2
# else:
# PL = 0.1
# Load Graph 4
# PL = np.random.normal(0.5,0.1)
# Load Graph 5
if( (i*dt)%10==0 and (i*dt)!=0 ):
PL1 = np.random.normal(0.5,0.1)
PL2 = np.random.normal(0.5,0.1)
# Load Graph 6
# if ( i*dt > 50 and i*dt <130):
# PL1 = 0.5
# else:
# PL1 = 0
# if ( i*dt > 20 and i*dt <70):
# PL2 = 0.5
# else:
# PL2 = 0
PL = 0.2 if( i*dt >= 0.2 ) else 0
plot_data["pl"].append(PL)
plot_data["pl1"].append(PL1)
plot_data["pl2"].append(PL2)
Ut = [ [ut_1] , [0] , [ PL] , [0] ]
Ut = [ [ut_1] , [ut_2] , [ PL1] , [PL2] ]
System.Output(Ut)
print(rbf.K)
# print(rbf.K)
rbf.Update(0 ,System.Y[0,0] ,System.yt_1 , System.yt_2, System.yt_3 )
nn1.Update(0 ,System.Y[0,0] ,System.yt_1_a1 , System.yt_2_a1, System.yt_3_a1 )
nn2.Update(0 ,System.Y[1,0] ,System.yt_1_a2 , System.yt_2_a2, System.yt_3_a2 )
plot_data["delF1"].append(System.Y[0,0])
plot_data["delF2"].append(System.Y[1,0])
plot_data["KI1"].append(nn1.K[1])
plot_data["KP1"].append(nn1.K[0])
plot_data["KD1"].append(nn1.K[2])
plot_data["KI2"].append(nn2.K[1])
plot_data["KP2"].append(nn2.K[0])
plot_data["KD2"].append(nn2.K[2])
plot_data["delF"].append(System.Y[0,0])
plot_data["time"].append(i*dt)
plot_data["KI"].append(rbf.K[1])
plot_data["KP"].append(rbf.K[0])
plot_data["KD"].append(rbf.K[2])
print("Final Tuned Kp , Ki and Kd values for area 1 are :" , nn1.K)
print("The steady state error of area 1 system is : ", System.Y[0][0])
print("Final Tuned Kp , Ki and Kd values for area 2 are :" , nn2.K)
print("The steady state error of area 2 system is : ", System.Y[1][0])
return plot_data,initial_states
@@ -90,7 +229,7 @@ def y(yd):
if __name__=="__main__":
yd = [0 for i in range(100*400) ]
yd = [0 for i in range(200*80) ]
## Generate Reference array here
@@ -99,7 +238,7 @@ if __name__=="__main__":
plt.subplot(2,3,1)
plt.plot(plot_data["time"],plot_data["pl"], label="Reference Signal")
plt.plot(plot_data["time"],plot_data["pl1"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
@@ -107,14 +246,14 @@ if __name__=="__main__":
plt.subplot(2,3,2)
plt.plot(plot_data["time"],plot_data["ut"], label="Reference Signal")
plt.plot(plot_data["time"],plot_data["ut1"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,3)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF"],label ="Output")
plt.plot(plot_data["time"],plot_data["delF1"],label ="Output")
plt.title( " Initial States y(t-1) , y(t-2) and y(t-3) are " + str(i[0]) + ", " + str(i[1]) +" and "+ str(i[2]) )
@@ -122,20 +261,81 @@ if __name__=="__main__":
plt.legend()
plt.subplot(2,3,4)
plt.plot(plot_data["time"],plot_data["KI"], label="KI")
plt.plot(plot_data["time"],plot_data["pl2"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.subplot(2,3,5)
plt.plot(plot_data["time"],plot_data["ut2"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,6)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF2"],label ="Output")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.show()
plt.subplot(2,3,1)
plt.plot(plot_data["time"],plot_data["KI1"], label="KI")
plt.title( "KI vs Time")
plt.ylabel("KI")
plt.xlabel("Time (s)")
plt.subplot(2,3,2)
plt.plot(plot_data["time"],plot_data["KP1"], label="KP")
plt.title( "KP vs Time")
plt.ylabel("KP ")
plt.xlabel("Time (s)")
plt.subplot(2,3,3)
plt.plot(plot_data["time"],plot_data["KD1"], label="KD")
plt.title( "KD vs Time")
plt.ylabel("KD")
plt.xlabel("Time (s)")
plt.title( " Initial States y(t-1) , y(t-2) and y(t-3) are " + str(i[0]) + ", " + str(i[1]) +" and "+ str(i[2]) )
plt.legend()
plt.subplot(2,3,4)
plt.plot(plot_data["time"],plot_data["KI2"], label="KI")
plt.title( "KI vs Time")
plt.ylabel("KI")
plt.xlabel("Time (s)")
plt.subplot(2,3,5)
plt.plot(plot_data["time"],plot_data["KP"], label="KP")
plt.plot(plot_data["time"],plot_data["KP2"], label="KP")
plt.title( "KP vs Time")
plt.ylabel("KP ")
plt.xlabel("Time (s)")
plt.subplot(2,3,6)
plt.plot(plot_data["time"],plot_data["KD"], label="KD")
plt.plot(plot_data["time"],plot_data["KD2"], label="KD")
plt.title( "KD vs Time")
plt.ylabel("KD")
plt.xlabel("Time (s)")
@@ -148,4 +348,3 @@ if __name__=="__main__":
plt.show()

View File

@@ -0,0 +1,361 @@
import matplotlib.pyplot as plt
import numpy as np
from numpy.lib.function_base import append
import warnings
warnings.filterwarnings("ignore")
from two_area import *
import neuralnetwork
def y(yd):
PL1 = 0
PL2 = 0
# rbf = RBF.RBF( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.95)
nn1 = neuralnetwork.NeuralNetwork( aw = 0.000065, av = 0.022, au = 0.025 , gamma = 0.98)
nn2 = neuralnetwork.NeuralNetwork( aw = 0.000065, av = 0.022, au = 0.025 , gamma = 0.98)
# av=0.021,au = 0.025, aw = 0.0003asig = 0.01 gamma = 0.9
# ( aw = 0.0003, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00474099
# ( aw = 0.00008, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00037917 Settling Time ~ 70
# ( aw = 0.00007, av = 0.021, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00033166 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.9) ---> Steady State Error : 0.00031556 Settling Time ~ 60
# ( aw = 0.000065, av = 0.022, au = 0.025 , asig = 0.01, gamma = 0.98) ----> Steady State Error : 0.00118022
Tg = 0.08
Tp = 20
Tt = 0.3
Kp = 120
T12 = 0.545/(2*np.pi)
a12 = -1
R = 5
T = dt = 1/80
beta1 = 0.425
beta2 = 0.425
yt_1 = 0
yt_2 = 0
yt_3 = 0
yt_1_ = 0
yt_2_ = 0
yt_3_ = 0
System = TwoAreaPS( Tg, Tp, Tt, Kp, T12, a12, R, T, beta1, beta2, yt_1,yt_2,yt_3 , yt_1_ ,yt_2_,yt_3_ )
initial_states = [ yt_1, yt_2 , yt_3 , yt_1_ , yt_2_ , yt_3_]
plot_data = {"ut1":[] , "pl1" : [] , "delF1":[] , 'KI1' : [], 'KP1' : [] , 'KD1' : [] ,
"ut2":[] , "pl2" : [] , "delF2":[] , 'KI2' : [], 'KP2' : [] , 'KD2' : [] , 'Tie Line' : [ ] ,"time" : []}
Ki = 0
Kd = 0
Kp = 0
nn1.K[0] = 13
nn1.K[1] = 1132
nn1.K[2] = 32
nn2.K[0] = 13
nn2.K[1] = 1132
nn2.K[2] = 32
ut_1 = 0
ut_2 = 0
t = 200
y=[]
x=[]
for i in range(0, int(t/dt) ):
# print(System.yt_1)
e_t_a1 = 0 - System.yt_1_a1
del_y_a1 = System.yt_1_a1 - System.yt_2_a1
del2_y_a1 = System.yt_1_a1 - 2*System.yt_2_a1 + System.yt_3_a1
nn1.X[:,0] = [ e_t_a1 , -del_y_a1 , -del2_y_a1]
nn1.HiddenLayer()
nn1.OutputLayer()
e_t_a2 = 0 - System.yt_1_a2
del_y_a2 = System.yt_1_a2 - System.yt_2_a2
del2_y_a2 = System.yt_1_a2 - 2*System.yt_2_a2 + System.yt_3_a2
nn2.X[:,0] = [ e_t_a2 , -del_y_a2 , -del2_y_a2]
nn2.HiddenLayer()
nn2.OutputLayer()
# ut_1 = ut_1 + 0.00043*e_t - 0.01*del_y - 0*del2_y
ut_1 = ut_1 + nn1.K[1]*e_t_a1 - nn1.K[0]*del_y_a1 - nn1.K[2]*del2_y_a1
ut_2 = ut_2 + nn2.K[1]*e_t_a2 - nn2.K[0]*del_y_a2 - nn2.K[2]*del2_y_a2
plot_data["ut1"].append(ut_1)
plot_data["ut2"].append(ut_2)
# Load Graph 1
# if( i*dt >= 40 ):
# PL = 0.2
# elif ( i*dt >= 10 ):
# PL = 0.8
# else:
# PL = 0
# Load Graph 2
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# else:
# PL = 0.6
# Load Graph 3
# if( i*dt <=10 ):
# PL = 0.2
# elif ( i*dt <= 20 ):
# PL = 0.3
# elif ( i*dt <= 30 ):
# PL = 0.4
# elif ( i*dt <= 40 ):
# PL = 0.5
# elif ( i*dt <= 50 ):
# PL = 0.6
# elif ( i*dt <= 60 ):
# PL = 0.6
# elif ( i*dt <= 70 ):
# PL = 0.5
# elif ( i*dt <= 80 ):
# PL = 0.4
# elif ( i*dt <= 90 ):
# PL = 0.3
# elif ( i*dt <= 100 ):
# PL = 0.2
# else:
# PL = 0.1
# Load Graph 4
# PL = np.random.normal(0.5,0.1)
# Load Graph 5
# if( (i*dt)%10==0 and (i*dt)!=0 ):
# PL1 = np.random.normal(0.5,0.1)
# PL2 = np.random.normal(0.5,0.1)
# Load Graph 6
if ( i*dt > 50 and i*dt <130):
PL1 = 0.5
else:
PL1 = 0
if ( i*dt > 20 and i*dt <70):
PL2 = 0.5
else:
PL2 = 0
plot_data["pl1"].append(PL1)
plot_data["pl2"].append(PL2)
Ut = [ [ut_1] , [ut_2] , [ PL1] , [PL2] ]
System.Output(Ut)
# print(rbf.K)
nn1.Update(0 ,System.Y[0,0] ,System.yt_1_a1 , System.yt_2_a1, System.yt_3_a1 )
nn2.Update(0 ,System.Y[1,0] ,System.yt_1_a2 , System.yt_2_a2, System.yt_3_a2 )
plot_data["delF1"].append(System.Y[0,0])
plot_data["delF2"].append(System.Y[1,0])
plot_data["KI1"].append(nn1.K[1])
plot_data["KP1"].append(nn1.K[0])
plot_data["KD1"].append(nn1.K[2])
plot_data["KI2"].append(nn2.K[1])
plot_data["KP2"].append(nn2.K[0])
plot_data["KD2"].append(nn2.K[2])
plot_data["time"].append(i*dt)
plot_data["Tie Line"].append(System.Y[2,0])
print("Final Tuned Kp , Ki and Kd values for area 1 are :" , nn1.K)
print("The steady state error of area 1 system is : ", System.Y[0][0])
print("Final Tuned Kp , Ki and Kd values for area 2 are :" , nn2.K)
print("The steady state error of area 2 system is : ", System.Y[1][0])
return plot_data,initial_states
if __name__=="__main__":
yd = [0 for i in range(200*80) ]
## Generate Reference array here
plot_data,i = y(yd)
plt.subplot(2,3,1)
plt.plot(plot_data["time"],plot_data["pl1"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.subplot(2,3,2)
plt.plot(plot_data["time"],plot_data["ut1"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,3)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF1"],label ="Output")
plt.title( " Initial States y(t-1) , y(t-2) and y(t-3) are " + str(i[0]) + ", " + str(i[1]) +" and "+ str(i[2]) )
plt.legend()
plt.subplot(2,3,4)
plt.plot(plot_data["time"],plot_data["pl2"], label="Reference Signal")
plt.title( "Load vs Time")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.subplot(2,3,5)
plt.plot(plot_data["time"],plot_data["ut2"], label="Reference Signal")
plt.title( "Control Signal vs Time")
plt.ylabel("Control Signal")
plt.xlabel("Time (s)")
plt.subplot(2,3,6)
plt.plot(plot_data["time"],yd, label="Reference Signal")
plt.plot(plot_data["time"],plot_data["delF2"],label ="Output")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.show()
plt.subplot(2,3,1)
plt.plot(plot_data["time"],plot_data["KI1"], label="KI")
plt.title( "KI vs Time")
plt.ylabel("KI")
plt.xlabel("Time (s)")
plt.subplot(2,3,2)
plt.plot(plot_data["time"],plot_data["KP1"], label="KP")
plt.title( "KP vs Time")
plt.ylabel("KP ")
plt.xlabel("Time (s)")
plt.subplot(2,3,3)
plt.plot(plot_data["time"],plot_data["KD1"], label="KD")
plt.title( "KD vs Time")
plt.ylabel("KD")
plt.xlabel("Time (s)")
plt.title( " Initial States y(t-1) , y(t-2) and y(t-3) are " + str(i[0]) + ", " + str(i[1]) +" and "+ str(i[2]) )
plt.legend()
plt.subplot(2,3,4)
plt.plot(plot_data["time"],plot_data["KI2"], label="KI")
plt.title( "KI vs Time")
plt.ylabel("KI")
plt.xlabel("Time (s)")
plt.subplot(2,3,5)
plt.plot(plot_data["time"],plot_data["KP2"], label="KP")
plt.title( "KP vs Time")
plt.ylabel("KP ")
plt.xlabel("Time (s)")
plt.subplot(2,3,6)
plt.plot(plot_data["time"],plot_data["KD2"], label="KD")
plt.title( "KD vs Time")
plt.ylabel("KD")
plt.xlabel("Time (s)")
plt.ylabel(" Output from System ")
plt.xlabel("Time (s)")
plt.show()
plt.plot(plot_data["time"],plot_data["Tie Line"])
plt.title( "Tie Line vs Time")
plt.ylabel("Tie Line")
plt.xlabel("Time (s)")
plt.show()