diff --git a/jsdtoa.c b/jsdtoa.c index 920c1a7..e0a07ec 100644 --- a/jsdtoa.c +++ b/jsdtoa.c @@ -1,153 +1,20 @@ -/* The authors of this software are Rob Pike and Ken Thompson. - * Copyright (c) 2002 by Lucent Technologies. - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR LUCENT TECHNOLOGIES MAKE ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - */ - -#include -#include -#include -#include -#include -#include +/* Locale-independent implementations of string <-> double conversions. */ #include "jsi.h" -typedef unsigned long ulong; +#ifdef _MSC_VER +typedef unsigned __int64 uint64_t; +#else +#include +#endif -enum { NSIGNIF = 17 }; +#include +#include -/* - * first few powers of 10, enough for about 1/2 of the - * total space for doubles. - */ -static double pows10[] = -{ - 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, - 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, - 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, - 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39, - 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49, - 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, - 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, - 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, - 1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89, - 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99, - 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, - 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, - 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, - 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, - 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, - 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, -}; -#define npows10 ((int)(sizeof(pows10)/sizeof(pows10[0]))) -#define pow10(x) fmtpow10(x) - -static double -pow10(int n) -{ - double d; - int neg; - - neg = 0; - if(n < 0){ - neg = 1; - n = -n; - } - - if(n < npows10) - d = pows10[n]; - else{ - d = pows10[npows10-1]; - for(;;){ - n -= npows10 - 1; - if(n < npows10){ - d *= pows10[n]; - break; - } - d *= pows10[npows10 - 1]; - } - } - if(neg) - return 1./d; - return d; -} - -/* - * add 1 to the decimal integer string a of length n. - * if 99999 overflows into 10000, return 1 to tell caller - * to move the virtual decimal point. - */ -static int -xadd1(char *a, int n) -{ - char *b; - int c; - - if(n < 0 || n > NSIGNIF) - return 0; - for(b = a+n-1; b >= a; b--) { - c = *b + 1; - if(c <= '9') { - *b = c; - return 0; - } - *b = '0'; - } - /* - * need to overflow adding digit. - * shift number down and insert 1 at beginning. - * decimal is known to be 0s or we wouldn't - * have gotten this far. (e.g., 99999+1 => 00000) - */ - a[0] = '1'; - return 1; -} - -/* - * subtract 1 from the decimal integer string a. - * if 10000 underflows into 09999, make it 99999 - * and return 1 to tell caller to move the virtual - * decimal point. this way, xsub1 is inverse of xadd1. - */ -static int -xsub1(char *a, int n) -{ - char *b; - int c; - - if(n < 0 || n > NSIGNIF) - return 0; - for(b = a+n-1; b >= a; b--) { - c = *b - 1; - if(c >= '0') { - if(c == '0' && b == a) { - /* - * just zeroed the top digit; shift everyone up. - * decimal is known to be 9s or we wouldn't - * have gotten this far. (e.g., 10000-1 => 09999) - */ - *b = '9'; - return 1; - } - *b = c; - return 0; - } - *b = '9'; - } - /* - * can't get here. the number a is always normalized - * so that it has a nonzero first digit. - */ - return 0; -} +#ifndef TRUE +#define TRUE 1 +#define FALSE 0 +#endif /* * format exponent like sprintf(p, "e%+d", e) @@ -177,674 +44,633 @@ js_fmtexp(char *p, int e) } /* - * compute decimal integer m, exp such that: - * f = m*10^exp - * m is as short as possible with losing exactness - * assumes special cases (NaN, +Inf, -Inf) have been handled. + * grisu2_59_56.c + * + * Grisu prints the optimal decimal representation of floating-point numbers. + * + * Copyright (c) 2009 Florian Loitsch + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. */ -void -js_dtoa(double f, char *s, int *exp, int *neg, int *ns) + +typedef struct diy_fp_t { + uint64_t f; + int e; +} diy_fp_t; + +#define DIY_SIGNIFICAND_SIZE 64 +#define D_1_LOG2_10 0.30102999566398114 /* 1 / lg(10) */ + +static const uint64_t powers_ten[] = { + 0xbf29dcaba82fdeae, 0xeef453d6923bd65a, 0x9558b4661b6565f8, 0xbaaee17fa23ebf76, + 0xe95a99df8ace6f54, 0x91d8a02bb6c10594, 0xb64ec836a47146fa, 0xe3e27a444d8d98b8, + 0x8e6d8c6ab0787f73, 0xb208ef855c969f50, 0xde8b2b66b3bc4724, 0x8b16fb203055ac76, + 0xaddcb9e83c6b1794, 0xd953e8624b85dd79, 0x87d4713d6f33aa6c, 0xa9c98d8ccb009506, + 0xd43bf0effdc0ba48, 0x84a57695fe98746d, 0xa5ced43b7e3e9188, 0xcf42894a5dce35ea, + 0x818995ce7aa0e1b2, 0xa1ebfb4219491a1f, 0xca66fa129f9b60a7, 0xfd00b897478238d1, + 0x9e20735e8cb16382, 0xc5a890362fddbc63, 0xf712b443bbd52b7c, 0x9a6bb0aa55653b2d, + 0xc1069cd4eabe89f9, 0xf148440a256e2c77, 0x96cd2a865764dbca, 0xbc807527ed3e12bd, + 0xeba09271e88d976c, 0x93445b8731587ea3, 0xb8157268fdae9e4c, 0xe61acf033d1a45df, + 0x8fd0c16206306bac, 0xb3c4f1ba87bc8697, 0xe0b62e2929aba83c, 0x8c71dcd9ba0b4926, + 0xaf8e5410288e1b6f, 0xdb71e91432b1a24b, 0x892731ac9faf056f, 0xab70fe17c79ac6ca, + 0xd64d3d9db981787d, 0x85f0468293f0eb4e, 0xa76c582338ed2622, 0xd1476e2c07286faa, + 0x82cca4db847945ca, 0xa37fce126597973d, 0xcc5fc196fefd7d0c, 0xff77b1fcbebcdc4f, + 0x9faacf3df73609b1, 0xc795830d75038c1e, 0xf97ae3d0d2446f25, 0x9becce62836ac577, + 0xc2e801fb244576d5, 0xf3a20279ed56d48a, 0x9845418c345644d7, 0xbe5691ef416bd60c, + 0xedec366b11c6cb8f, 0x94b3a202eb1c3f39, 0xb9e08a83a5e34f08, 0xe858ad248f5c22ca, + 0x91376c36d99995be, 0xb58547448ffffb2e, 0xe2e69915b3fff9f9, 0x8dd01fad907ffc3c, + 0xb1442798f49ffb4b, 0xdd95317f31c7fa1d, 0x8a7d3eef7f1cfc52, 0xad1c8eab5ee43b67, + 0xd863b256369d4a41, 0x873e4f75e2224e68, 0xa90de3535aaae202, 0xd3515c2831559a83, + 0x8412d9991ed58092, 0xa5178fff668ae0b6, 0xce5d73ff402d98e4, 0x80fa687f881c7f8e, + 0xa139029f6a239f72, 0xc987434744ac874f, 0xfbe9141915d7a922, 0x9d71ac8fada6c9b5, + 0xc4ce17b399107c23, 0xf6019da07f549b2b, 0x99c102844f94e0fb, 0xc0314325637a193a, + 0xf03d93eebc589f88, 0x96267c7535b763b5, 0xbbb01b9283253ca3, 0xea9c227723ee8bcb, + 0x92a1958a7675175f, 0xb749faed14125d37, 0xe51c79a85916f485, 0x8f31cc0937ae58d3, + 0xb2fe3f0b8599ef08, 0xdfbdcece67006ac9, 0x8bd6a141006042be, 0xaecc49914078536d, + 0xda7f5bf590966849, 0x888f99797a5e012d, 0xaab37fd7d8f58179, 0xd5605fcdcf32e1d7, + 0x855c3be0a17fcd26, 0xa6b34ad8c9dfc070, 0xd0601d8efc57b08c, 0x823c12795db6ce57, + 0xa2cb1717b52481ed, 0xcb7ddcdda26da269, 0xfe5d54150b090b03, 0x9efa548d26e5a6e2, + 0xc6b8e9b0709f109a, 0xf867241c8cc6d4c1, 0x9b407691d7fc44f8, 0xc21094364dfb5637, + 0xf294b943e17a2bc4, 0x979cf3ca6cec5b5b, 0xbd8430bd08277231, 0xece53cec4a314ebe, + 0x940f4613ae5ed137, 0xb913179899f68584, 0xe757dd7ec07426e5, 0x9096ea6f3848984f, + 0xb4bca50b065abe63, 0xe1ebce4dc7f16dfc, 0x8d3360f09cf6e4bd, 0xb080392cc4349ded, + 0xdca04777f541c568, 0x89e42caaf9491b61, 0xac5d37d5b79b6239, 0xd77485cb25823ac7, + 0x86a8d39ef77164bd, 0xa8530886b54dbdec, 0xd267caa862a12d67, 0x8380dea93da4bc60, + 0xa46116538d0deb78, 0xcd795be870516656, 0x806bd9714632dff6, 0xa086cfcd97bf97f4, + 0xc8a883c0fdaf7df0, 0xfad2a4b13d1b5d6c, 0x9cc3a6eec6311a64, 0xc3f490aa77bd60fd, + 0xf4f1b4d515acb93c, 0x991711052d8bf3c5, 0xbf5cd54678eef0b7, 0xef340a98172aace5, + 0x9580869f0e7aac0f, 0xbae0a846d2195713, 0xe998d258869facd7, 0x91ff83775423cc06, + 0xb67f6455292cbf08, 0xe41f3d6a7377eeca, 0x8e938662882af53e, 0xb23867fb2a35b28e, + 0xdec681f9f4c31f31, 0x8b3c113c38f9f37f, 0xae0b158b4738705f, 0xd98ddaee19068c76, + 0x87f8a8d4cfa417ca, 0xa9f6d30a038d1dbc, 0xd47487cc8470652b, 0x84c8d4dfd2c63f3b, + 0xa5fb0a17c777cf0a, 0xcf79cc9db955c2cc, 0x81ac1fe293d599c0, 0xa21727db38cb0030, + 0xca9cf1d206fdc03c, 0xfd442e4688bd304b, 0x9e4a9cec15763e2f, 0xc5dd44271ad3cdba, + 0xf7549530e188c129, 0x9a94dd3e8cf578ba, 0xc13a148e3032d6e8, 0xf18899b1bc3f8ca2, + 0x96f5600f15a7b7e5, 0xbcb2b812db11a5de, 0xebdf661791d60f56, 0x936b9fcebb25c996, + 0xb84687c269ef3bfb, 0xe65829b3046b0afa, 0x8ff71a0fe2c2e6dc, 0xb3f4e093db73a093, + 0xe0f218b8d25088b8, 0x8c974f7383725573, 0xafbd2350644eead0, 0xdbac6c247d62a584, + 0x894bc396ce5da772, 0xab9eb47c81f5114f, 0xd686619ba27255a3, 0x8613fd0145877586, + 0xa798fc4196e952e7, 0xd17f3b51fca3a7a1, 0x82ef85133de648c5, 0xa3ab66580d5fdaf6, + 0xcc963fee10b7d1b3, 0xffbbcfe994e5c620, 0x9fd561f1fd0f9bd4, 0xc7caba6e7c5382c9, + 0xf9bd690a1b68637b, 0x9c1661a651213e2d, 0xc31bfa0fe5698db8, 0xf3e2f893dec3f126, + 0x986ddb5c6b3a76b8, 0xbe89523386091466, 0xee2ba6c0678b597f, 0x94db483840b717f0, + 0xba121a4650e4ddec, 0xe896a0d7e51e1566, 0x915e2486ef32cd60, 0xb5b5ada8aaff80b8, + 0xe3231912d5bf60e6, 0x8df5efabc5979c90, 0xb1736b96b6fd83b4, 0xddd0467c64bce4a1, + 0x8aa22c0dbef60ee4, 0xad4ab7112eb3929e, 0xd89d64d57a607745, 0x87625f056c7c4a8b, + 0xa93af6c6c79b5d2e, 0xd389b47879823479, 0x843610cb4bf160cc, 0xa54394fe1eedb8ff, + 0xce947a3da6a9273e, 0x811ccc668829b887, 0xa163ff802a3426a9, 0xc9bcff6034c13053, + 0xfc2c3f3841f17c68, 0x9d9ba7832936edc1, 0xc5029163f384a931, 0xf64335bcf065d37d, + 0x99ea0196163fa42e, 0xc06481fb9bcf8d3a, 0xf07da27a82c37088, 0x964e858c91ba2655, + 0xbbe226efb628afeb, 0xeadab0aba3b2dbe5, 0x92c8ae6b464fc96f, 0xb77ada0617e3bbcb, + 0xe55990879ddcaabe, 0x8f57fa54c2a9eab7, 0xb32df8e9f3546564, 0xdff9772470297ebd, + 0x8bfbea76c619ef36, 0xaefae51477a06b04, 0xdab99e59958885c5, 0x88b402f7fd75539b, + 0xaae103b5fcd2a882, 0xd59944a37c0752a2, 0x857fcae62d8493a5, 0xa6dfbd9fb8e5b88f, + 0xd097ad07a71f26b2, 0x825ecc24c8737830, 0xa2f67f2dfa90563b, 0xcbb41ef979346bca, + 0xfea126b7d78186bd, 0x9f24b832e6b0f436, 0xc6ede63fa05d3144, 0xf8a95fcf88747d94, + 0x9b69dbe1b548ce7d, 0xc24452da229b021c, 0xf2d56790ab41c2a3, 0x97c560ba6b0919a6, + 0xbdb6b8e905cb600f, 0xed246723473e3813, 0x9436c0760c86e30c, 0xb94470938fa89bcf, + 0xe7958cb87392c2c3, 0x90bd77f3483bb9ba, 0xb4ecd5f01a4aa828, 0xe2280b6c20dd5232, + 0x8d590723948a535f, 0xb0af48ec79ace837, 0xdcdb1b2798182245, 0x8a08f0f8bf0f156b, + 0xac8b2d36eed2dac6, 0xd7adf884aa879177, 0x86ccbb52ea94baeb, 0xa87fea27a539e9a5, + 0xd29fe4b18e88640f, 0x83a3eeeef9153e89, 0xa48ceaaab75a8e2b, 0xcdb02555653131b6, + 0x808e17555f3ebf12, 0xa0b19d2ab70e6ed6, 0xc8de047564d20a8c, 0xfb158592be068d2f, + 0x9ced737bb6c4183d, 0xc428d05aa4751e4d, 0xf53304714d9265e0, 0x993fe2c6d07b7fac, + 0xbf8fdb78849a5f97, 0xef73d256a5c0f77d, 0x95a8637627989aae, 0xbb127c53b17ec159, + 0xe9d71b689dde71b0, 0x9226712162ab070e, 0xb6b00d69bb55c8d1, 0xe45c10c42a2b3b06, + 0x8eb98a7a9a5b04e3, 0xb267ed1940f1c61c, 0xdf01e85f912e37a3, 0x8b61313bbabce2c6, + 0xae397d8aa96c1b78, 0xd9c7dced53c72256, 0x881cea14545c7575, 0xaa242499697392d3, + 0xd4ad2dbfc3d07788, 0x84ec3c97da624ab5, 0xa6274bbdd0fadd62, 0xcfb11ead453994ba, + 0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3e, 0xfd87b5f28300ca0e, + 0x9e74d1b791e07e48, 0xc612062576589ddb, 0xf79687aed3eec551, 0x9abe14cd44753b53, + 0xc16d9a0095928a27, 0xf1c90080baf72cb1, 0x971da05074da7bef, 0xbce5086492111aeb, + 0xec1e4a7db69561a5, 0x9392ee8e921d5d07, 0xb877aa3236a4b449, 0xe69594bec44de15b, + 0x901d7cf73ab0acd9, 0xb424dc35095cd80f, 0xe12e13424bb40e13, 0x8cbccc096f5088cc, + 0xafebff0bcb24aaff, 0xdbe6fecebdedd5bf, 0x89705f4136b4a597, 0xabcc77118461cefd, + 0xd6bf94d5e57a42bc, 0x8637bd05af6c69b6, 0xa7c5ac471b478423, 0xd1b71758e219652c, + 0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a, 0xcccccccccccccccd, 0x8000000000000000, + 0xa000000000000000, 0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000, + 0xc350000000000000, 0xf424000000000000, 0x9896800000000000, 0xbebc200000000000, + 0xee6b280000000000, 0x9502f90000000000, 0xba43b74000000000, 0xe8d4a51000000000, + 0x9184e72a00000000, 0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000, + 0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000, 0xad78ebc5ac620000, + 0xd8d726b7177a8000, 0x878678326eac9000, 0xa968163f0a57b400, 0xd3c21bcecceda100, + 0x84595161401484a0, 0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940984, + 0xa18f07d736b90be5, 0xc9f2c9cd04674edf, 0xfc6f7c4045812296, 0x9dc5ada82b70b59e, + 0xc5371912364ce305, 0xf684df56c3e01bc7, 0x9a130b963a6c115c, 0xc097ce7bc90715b3, + 0xf0bdc21abb48db20, 0x96769950b50d88f4, 0xbc143fa4e250eb31, 0xeb194f8e1ae525fd, + 0x92efd1b8d0cf37be, 0xb7abc627050305ae, 0xe596b7b0c643c719, 0x8f7e32ce7bea5c70, + 0xb35dbf821ae4f38c, 0xe0352f62a19e306f, 0x8c213d9da502de45, 0xaf298d050e4395d7, + 0xdaf3f04651d47b4c, 0x88d8762bf324cd10, 0xab0e93b6efee0054, 0xd5d238a4abe98068, + 0x85a36366eb71f041, 0xa70c3c40a64e6c52, 0xd0cf4b50cfe20766, 0x82818f1281ed44a0, + 0xa321f2d7226895c8, 0xcbea6f8ceb02bb3a, 0xfee50b7025c36a08, 0x9f4f2726179a2245, + 0xc722f0ef9d80aad6, 0xf8ebad2b84e0d58c, 0x9b934c3b330c8577, 0xc2781f49ffcfa6d5, + 0xf316271c7fc3908b, 0x97edd871cfda3a57, 0xbde94e8e43d0c8ec, 0xed63a231d4c4fb27, + 0x945e455f24fb1cf9, 0xb975d6b6ee39e437, 0xe7d34c64a9c85d44, 0x90e40fbeea1d3a4b, + 0xb51d13aea4a488dd, 0xe264589a4dcdab15, 0x8d7eb76070a08aed, 0xb0de65388cc8ada8, + 0xdd15fe86affad912, 0x8a2dbf142dfcc7ab, 0xacb92ed9397bf996, 0xd7e77a8f87daf7fc, + 0x86f0ac99b4e8dafd, 0xa8acd7c0222311bd, 0xd2d80db02aabd62c, 0x83c7088e1aab65db, + 0xa4b8cab1a1563f52, 0xcde6fd5e09abcf27, 0x80b05e5ac60b6178, 0xa0dc75f1778e39d6, + 0xc913936dd571c84c, 0xfb5878494ace3a5f, 0x9d174b2dcec0e47b, 0xc45d1df942711d9a, + 0xf5746577930d6501, 0x9968bf6abbe85f20, 0xbfc2ef456ae276e9, 0xefb3ab16c59b14a3, + 0x95d04aee3b80ece6, 0xbb445da9ca61281f, 0xea1575143cf97227, 0x924d692ca61be758, + 0xb6e0c377cfa2e12e, 0xe498f455c38b997a, 0x8edf98b59a373fec, 0xb2977ee300c50fe7, + 0xdf3d5e9bc0f653e1, 0x8b865b215899f46d, 0xae67f1e9aec07188, 0xda01ee641a708dea, + 0x884134fe908658b2, 0xaa51823e34a7eedf, 0xd4e5e2cdc1d1ea96, 0x850fadc09923329e, + 0xa6539930bf6bff46, 0xcfe87f7cef46ff17, 0x81f14fae158c5f6e, 0xa26da3999aef774a, + 0xcb090c8001ab551c, 0xfdcb4fa002162a63, 0x9e9f11c4014dda7e, 0xc646d63501a1511e, + 0xf7d88bc24209a565, 0x9ae757596946075f, 0xc1a12d2fc3978937, 0xf209787bb47d6b85, + 0x9745eb4d50ce6333, 0xbd176620a501fc00, 0xec5d3fa8ce427b00, 0x93ba47c980e98ce0, + 0xb8a8d9bbe123f018, 0xe6d3102ad96cec1e, 0x9043ea1ac7e41393, 0xb454e4a179dd1877, + 0xe16a1dc9d8545e95, 0x8ce2529e2734bb1d, 0xb01ae745b101e9e4, 0xdc21a1171d42645d, + 0x899504ae72497eba, 0xabfa45da0edbde69, 0xd6f8d7509292d603, 0x865b86925b9bc5c2, + 0xa7f26836f282b733, 0xd1ef0244af2364ff, 0x8335616aed761f1f, 0xa402b9c5a8d3a6e7, + 0xcd036837130890a1, 0x802221226be55a65, 0xa02aa96b06deb0fe, 0xc83553c5c8965d3d, + 0xfa42a8b73abbf48d, 0x9c69a97284b578d8, 0xc38413cf25e2d70e, 0xf46518c2ef5b8cd1, + 0x98bf2f79d5993803, 0xbeeefb584aff8604, 0xeeaaba2e5dbf6785, 0x952ab45cfa97a0b3, + 0xba756174393d88e0, 0xe912b9d1478ceb17, 0x91abb422ccb812ef, 0xb616a12b7fe617aa, + 0xe39c49765fdf9d95, 0x8e41ade9fbebc27d, 0xb1d219647ae6b31c, 0xde469fbd99a05fe3, + 0x8aec23d680043bee, 0xada72ccc20054aea, 0xd910f7ff28069da4, 0x87aa9aff79042287, + 0xa99541bf57452b28, 0xd3fa922f2d1675f2, 0x847c9b5d7c2e09b7, 0xa59bc234db398c25, + 0xcf02b2c21207ef2f, 0x8161afb94b44f57d, 0xa1ba1ba79e1632dc, 0xca28a291859bbf93, + 0xfcb2cb35e702af78, 0x9defbf01b061adab, 0xc56baec21c7a1916, 0xf6c69a72a3989f5c, + 0x9a3c2087a63f6399, 0xc0cb28a98fcf3c80, 0xf0fdf2d3f3c30b9f, 0x969eb7c47859e744, + 0xbc4665b596706115, 0xeb57ff22fc0c795a, 0x9316ff75dd87cbd8, 0xb7dcbf5354e9bece, + 0xe5d3ef282a242e82, 0x8fa475791a569d11, 0xb38d92d760ec4455, 0xe070f78d3927556b, + 0x8c469ab843b89563, 0xaf58416654a6babb, 0xdb2e51bfe9d0696a, 0x88fcf317f22241e2, + 0xab3c2fddeeaad25b, 0xd60b3bd56a5586f2, 0x85c7056562757457, 0xa738c6bebb12d16d, + 0xd106f86e69d785c8, 0x82a45b450226b39d, 0xa34d721642b06084, 0xcc20ce9bd35c78a5, + 0xff290242c83396ce, 0x9f79a169bd203e41, 0xc75809c42c684dd1, 0xf92e0c3537826146, + 0x9bbcc7a142b17ccc, 0xc2abf989935ddbfe, 0xf356f7ebf83552fe, 0x98165af37b2153df, + 0xbe1bf1b059e9a8d6, 0xeda2ee1c7064130c, 0x9485d4d1c63e8be8, 0xb9a74a0637ce2ee1, + 0xe8111c87c5c1ba9a, 0x910ab1d4db9914a0, 0xb54d5e4a127f59c8, 0xe2a0b5dc971f303a, + 0x8da471a9de737e24, 0xb10d8e1456105dad, 0xdd50f1996b947519, 0x8a5296ffe33cc930, + 0xace73cbfdc0bfb7b, 0xd8210befd30efa5a, 0x8714a775e3e95c78, 0xa8d9d1535ce3b396, + 0xd31045a8341ca07c, 0x83ea2b892091e44e, 0xa4e4b66b68b65d61, 0xce1de40642e3f4b9, + 0x80d2ae83e9ce78f4, 0xa1075a24e4421731, 0xc94930ae1d529cfd, 0xfb9b7cd9a4a7443c, + 0x9d412e0806e88aa6, 0xc491798a08a2ad4f, 0xf5b5d7ec8acb58a3, 0x9991a6f3d6bf1766, + 0xbff610b0cc6edd3f, 0xeff394dcff8a948f, 0x95f83d0a1fb69cd9, 0xbb764c4ca7a44410, + 0xea53df5fd18d5514, 0x92746b9be2f8552c, 0xb7118682dbb66a77, 0xe4d5e82392a40515, + 0x8f05b1163ba6832d, 0xb2c71d5bca9023f8, 0xdf78e4b2bd342cf7, 0x8bab8eefb6409c1a, + 0xae9672aba3d0c321, 0xda3c0f568cc4f3e9, 0x8865899617fb1871, 0xaa7eebfb9df9de8e, + 0xd51ea6fa85785631, 0x8533285c936b35df, 0xa67ff273b8460357, 0xd01fef10a657842c, + 0x8213f56a67f6b29c, 0xa298f2c501f45f43, 0xcb3f2f7642717713, 0xfe0efb53d30dd4d8, + 0x9ec95d1463e8a507, 0xc67bb4597ce2ce49, 0xf81aa16fdc1b81db, 0x9b10a4e5e9913129, + 0xc1d4ce1f63f57d73, 0xf24a01a73cf2dcd0, 0x976e41088617ca02, 0xbd49d14aa79dbc82, + 0xec9c459d51852ba3, 0x93e1ab8252f33b46, 0xb8da1662e7b00a17, 0xe7109bfba19c0c9d, + 0x906a617d450187e2, 0xb484f9dc9641e9db, 0xe1a63853bbd26451, 0x8d07e33455637eb3, + 0xb049dc016abc5e60, 0xdc5c5301c56b75f7, 0x89b9b3e11b6329bb, 0xac2820d9623bf429, + 0xd732290fbacaf134, 0x867f59a9d4bed6c0, 0xa81f301449ee8c70, 0xd226fc195c6a2f8c, + 0x83585d8fd9c25db8, 0xa42e74f3d032f526, 0xcd3a1230c43fb26f, 0x80444b5e7aa7cf85, + 0xa0555e361951c367, 0xc86ab5c39fa63441, 0xfa856334878fc151, 0x9c935e00d4b9d8d2, + 0xc3b8358109e84f07, 0xf4a642e14c6262c9, 0x98e7e9cccfbd7dbe, 0xbf21e44003acdd2d, + 0xeeea5d5004981478, 0x95527a5202df0ccb, 0xbaa718e68396cffe, 0xe950df20247c83fd, + 0x91d28b7416cdd27e, 0xb6472e511c81471e, 0xe3d8f9e563a198e5, 0x8e679c2f5e44ff8f, + 0xb201833b35d63f73, 0xde81e40a034bcf50, 0x8b112e86420f6192, 0xadd57a27d29339f6, + 0xd94ad8b1c7380874, 0x87cec76f1c830549, 0xa9c2794ae3a3c69b, 0xd433179d9c8cb841, + 0x849feec281d7f329, 0xa5c7ea73224deff3, 0xcf39e50feae16bf0, 0x81842f29f2cce376, + 0xa1e53af46f801c53, 0xca5e89b18b602368, 0xfcf62c1dee382c42, 0x9e19db92b4e31ba9, + 0xc5a05277621be294, 0xf70867153aa2db39, 0x9a65406d44a5c903, 0xc0fe908895cf3b44, + 0xf13e34aabb430a15, 0x96c6e0eab509e64d, 0xbc789925624c5fe1, 0xeb96bf6ebadf77d9, + 0x933e37a534cbaae8, 0xb80dc58e81fe95a1, 0xe61136f2227e3b0a, 0x8fcac257558ee4e6, + 0xb3bd72ed2af29e20, 0xe0accfa875af45a8, 0x8c6c01c9498d8b89, 0xaf87023b9bf0ee6b, + 0xdb68c2ca82ed2a06, 0x892179be91d43a44, 0xab69d82e364948d4 +}; + +static const int powers_ten_e[] = { + -1203, -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, + -1166, -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, + -1130, -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, + -1093, -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, + -1057, -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, + -1020, -1017, -1014, -1010, -1007, -1004, -1000, -997, -994, -990, -987, -984, + -980, -977, -974, -970, -967, -964, -960, -957, -954, -950, -947, -944, -940, + -937, -934, -931, -927, -924, -921, -917, -914, -911, -907, -904, -901, -897, + -894, -891, -887, -884, -881, -877, -874, -871, -867, -864, -861, -857, -854, + -851, -847, -844, -841, -838, -834, -831, -828, -824, -821, -818, -814, -811, + -808, -804, -801, -798, -794, -791, -788, -784, -781, -778, -774, -771, -768, + -764, -761, -758, -754, -751, -748, -744, -741, -738, -735, -731, -728, -725, + -721, -718, -715, -711, -708, -705, -701, -698, -695, -691, -688, -685, -681, + -678, -675, -671, -668, -665, -661, -658, -655, -651, -648, -645, -642, -638, + -635, -632, -628, -625, -622, -618, -615, -612, -608, -605, -602, -598, -595, + -592, -588, -585, -582, -578, -575, -572, -568, -565, -562, -558, -555, -552, + -549, -545, -542, -539, -535, -532, -529, -525, -522, -519, -515, -512, -509, + -505, -502, -499, -495, -492, -489, -485, -482, -479, -475, -472, -469, -465, + -462, -459, -455, -452, -449, -446, -442, -439, -436, -432, -429, -426, -422, + -419, -416, -412, -409, -406, -402, -399, -396, -392, -389, -386, -382, -379, + -376, -372, -369, -366, -362, -359, -356, -353, -349, -346, -343, -339, -336, + -333, -329, -326, -323, -319, -316, -313, -309, -306, -303, -299, -296, -293, + -289, -286, -283, -279, -276, -273, -269, -266, -263, -259, -256, -253, -250, + -246, -243, -240, -236, -233, -230, -226, -223, -220, -216, -213, -210, -206, + -203, -200, -196, -193, -190, -186, -183, -180, -176, -173, -170, -166, -163, + -160, -157, -153, -150, -147, -143, -140, -137, -133, -130, -127, -123, -120, + -117, -113, -110, -107, -103, -100, -97, -93, -90, -87, -83, -80, -77, -73, + -70, -67, -63, -60, -57, -54, -50, -47, -44, -40, -37, -34, -30, -27, -24, -20, + -17, -14, -10, -7, -4, 0, 3, 6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 39, 43, 46, + 49, 53, 56, 59, 63, 66, 69, 73, 76, 79, 83, 86, 89, 93, 96, 99, 103, 106, 109, + 113, 116, 119, 123, 126, 129, 132, 136, 139, 142, 146, 149, 152, 156, 159, 162, + 166, 169, 172, 176, 179, 182, 186, 189, 192, 196, 199, 202, 206, 209, 212, 216, + 219, 222, 226, 229, 232, 235, 239, 242, 245, 249, 252, 255, 259, 262, 265, 269, + 272, 275, 279, 282, 285, 289, 292, 295, 299, 302, 305, 309, 312, 315, 319, 322, + 325, 328, 332, 335, 338, 342, 345, 348, 352, 355, 358, 362, 365, 368, 372, 375, + 378, 382, 385, 388, 392, 395, 398, 402, 405, 408, 412, 415, 418, 422, 425, 428, + 431, 435, 438, 441, 445, 448, 451, 455, 458, 461, 465, 468, 471, 475, 478, 481, + 485, 488, 491, 495, 498, 501, 505, 508, 511, 515, 518, 521, 524, 528, 531, 534, + 538, 541, 544, 548, 551, 554, 558, 561, 564, 568, 571, 574, 578, 581, 584, 588, + 591, 594, 598, 601, 604, 608, 611, 614, 617, 621, 624, 627, 631, 634, 637, 641, + 644, 647, 651, 654, 657, 661, 664, 667, 671, 674, 677, 681, 684, 687, 691, 694, + 697, 701, 704, 707, 711, 714, 717, 720, 724, 727, 730, 734, 737, 740, 744, 747, + 750, 754, 757, 760, 764, 767, 770, 774, 777, 780, 784, 787, 790, 794, 797, 800, + 804, 807, 810, 813, 817, 820, 823, 827, 830, 833, 837, 840, 843, 847, 850, 853, + 857, 860, 863, 867, 870, 873, 877, 880, 883, 887, 890, 893, 897, 900, 903, 907, + 910, 913, 916, 920, 923, 926, 930, 933, 936, 940, 943, 946, 950, 953, 956, 960, + 963, 966, 970, 973, 976, 980, 983, 986, 990, 993, 996, 1000, 1003, 1006, 1009, + 1013, 1016, 1019, 1023, 1026, 1029, 1033, 1036, 1039, 1043, 1046, 1049, 1053, + 1056, 1059, 1063, 1066, 1069, 1073, 1076 +}; + +static diy_fp_t cached_power(int k) { - int c, d, e2, e, ee, i, ndigit, oerrno; - char tmp[NSIGNIF+10]; - double g; - - oerrno = errno; /* in case strtod smashes errno */ - - /* - * make f non-negative. - */ - *neg = 0; - if(f < 0) { - f = -f; - *neg = 1; - } - - /* - * must handle zero specially. - */ - if(f == 0){ - *exp = 0; - s[0] = '0'; - s[1] = '\0'; - *ns = 1; - return; - } - - /* - * find g,e such that f = g*10^e. - * guess 10-exponent using 2-exponent, then fine tune. - */ - frexp(f, &e2); - e = (int)(e2 * .301029995664); - g = f * pow10(-e); - while(g < 1) { - e--; - g = f * pow10(-e); - } - while(g >= 10) { - e++; - g = f * pow10(-e); - } - - /* - * convert NSIGNIF digits as a first approximation. - */ - for(i=0; i g) { - if(xadd1(s, NSIGNIF)) { - /* gained a digit */ - e--; - js_fmtexp(s+NSIGNIF, e); - } - continue; - } - if(f < g) { - if(xsub1(s, NSIGNIF)) { - /* lost a digit */ - e++; - js_fmtexp(s+NSIGNIF, e); - } - continue; - } - break; - } - - /* - * play with the decimal to try to simplify. - */ - - /* - * bump last few digits up to 9 if we can - */ - for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) { - c = s[i]; - if(c != '9') { - s[i] = '9'; - g = js_strtod(s, NULL); - if(g != f) { - s[i] = c; - break; - } - } - } - - /* - * add 1 in hopes of turning 9s to 0s - */ - if(s[NSIGNIF-1] == '9') { - strcpy(tmp, s); - ee = e; - if(xadd1(tmp, NSIGNIF)) { - ee--; - js_fmtexp(tmp+NSIGNIF, ee); - } - g = js_strtod(tmp, NULL); - if(g == f) { - strcpy(s, tmp); - e = ee; - } - } - - /* - * bump last few digits down to 0 as we can. - */ - for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) { - c = s[i]; - if(c != '0') { - s[i] = '0'; - g = js_strtod(s, NULL); - if(g != f) { - s[i] = c; - break; - } - } - } - - /* - * remove trailing zeros. - */ - ndigit = NSIGNIF; - while(ndigit > 1 && s[ndigit-1] == '0'){ - e++; - --ndigit; - } - s[ndigit] = 0; - *exp = e; - *ns = ndigit; - errno = oerrno; + diy_fp_t res; + int index = 343 + k; + res.f = powers_ten[index]; + res.e = powers_ten_e[index]; + return res; } -static inline ulong -umuldiv(ulong a, ulong b, ulong c) -{ - double d; +static int k_comp(int e, int alpha, int gamma) { + return ceil((alpha-e+63) * D_1_LOG2_10); +} - d = ((double)a * (double)b) / (double)c; - if(d >= 4294967295.) - d = 4294967295.; - return (ulong)d; +static diy_fp_t minus(diy_fp_t x, diy_fp_t y) +{ + diy_fp_t r; + assert(x.e == y.e); + assert(x.f >= y.f); + r.f = x.f - y.f; + r.e = x.e; + return r; +} + +static diy_fp_t multiply(diy_fp_t x, diy_fp_t y) +{ + uint64_t a,b,c,d,ac,bc,ad,bd,tmp; + diy_fp_t r; uint64_t M32 = 0xFFFFFFFF; + a = x.f >> 32; b = x.f & M32; + c = y.f >> 32; d = y.f & M32; + ac = a*c; bc = b*c; ad = a*d; bd = b*d; + tmp = (bd>>32) + (ad&M32) + (bc&M32); + tmp += 1U << 31; + r.f = ac+(ad>>32)+(bc>>32)+(tmp >>32); + r.e = x.e + y.e + 64; + return r; +} + +typedef union { + double d; + uint64_t n; +} converter_t; + +static uint64_t double_to_uint64(double d) { converter_t tmp; tmp.d = d; return tmp.n; } + +#define DP_SIGNIFICAND_SIZE 52 +#define DP_EXPONENT_BIAS (0x3FF + DP_SIGNIFICAND_SIZE) +#define DP_MIN_EXPONENT (-DP_EXPONENT_BIAS) +#define DP_EXPONENT_MASK 0x7FF0000000000000 +#define DP_SIGNIFICAND_MASK 0x000FFFFFFFFFFFFF +#define DP_HIDDEN_BIT 0x0010000000000000 + +static diy_fp_t double2diy_fp(double d) +{ + uint64_t d64 = double_to_uint64(d); + int biased_e = (d64 & DP_EXPONENT_MASK) >> DP_SIGNIFICAND_SIZE; + uint64_t significand = (d64 & DP_SIGNIFICAND_MASK); + diy_fp_t res; + if (biased_e != 0) { + res.f = significand + DP_HIDDEN_BIT; + res.e = biased_e - DP_EXPONENT_BIAS; + } else { + res.f = significand; + res.e = DP_MIN_EXPONENT + 1; + } + return res; +} + +static diy_fp_t normalize_boundary(diy_fp_t in) +{ + diy_fp_t res = in; + /* Normalize now */ + /* the original number could have been a denormal. */ + while (! (res.f & (DP_HIDDEN_BIT << 1))) { + res.f <<= 1; + res.e--; + } + /* do the final shifts in one go. Don't forget the hidden bit (the '-1') */ + res.f <<= (DIY_SIGNIFICAND_SIZE - DP_SIGNIFICAND_SIZE - 2); + res.e = res.e - (DIY_SIGNIFICAND_SIZE - DP_SIGNIFICAND_SIZE - 2); + return res; +} + +static void normalized_boundaries(double d, diy_fp_t* out_m_minus, diy_fp_t* out_m_plus) +{ + diy_fp_t v = double2diy_fp(d); + diy_fp_t pl, mi; + int significand_is_zero = v.f == DP_HIDDEN_BIT; + pl.f = (v.f << 1) + 1; pl.e = v.e - 1; + pl = normalize_boundary(pl); + if (significand_is_zero) { + mi.f = (v.f << 2) - 1; + mi.e = v.e - 2; + } else { + mi.f = (v.f << 1) - 1; + mi.e = v.e - 1; + } + mi.f <<= mi.e - pl.e; + mi.e = pl.e; + *out_m_plus = pl; + *out_m_minus = mi; +} + +#define TEN2 100 +static void digit_gen(diy_fp_t Mp, diy_fp_t delta, char* buffer, int* len, int* K) +{ + uint32_t div; int d,kappa; diy_fp_t one; + one.f = ((uint64_t) 1) << -Mp.e; one.e = Mp.e; + uint32_t p1 = Mp.f >> -one.e; + uint64_t p2 = Mp.f & (one.f - 1); + *len = 0; kappa = 3; div = TEN2; + while (kappa > 0) { + d = p1 / div; + if (d || *len) buffer[(*len)++] = '0' + d; + p1 %= div; kappa--; div /= 10; + if ((((uint64_t)p1)<<-one.e)+p2 <= delta.f) { + *K += kappa; return; + } + } + do { + p2 *= 10; + d = p2 >> -one.e; + if (d || *len) buffer[(*len)++] = '0' + d; + p2 &= one.f - 1; kappa--; delta.f *= 10; + } while (p2 > delta.f); + *K += kappa; +} + +int +js_grisu2(double v, char *buffer, int *K) +{ + int length; + diy_fp_t w_m, w_p; + int q = 64, alpha = -59, gamma = -56; + normalized_boundaries(v, &w_m, &w_p); + int mk = k_comp(w_p.e + q, alpha, gamma); + diy_fp_t c_mk = cached_power(mk); + diy_fp_t Wp = multiply(w_p, c_mk); + diy_fp_t Wm = multiply(w_m, c_mk); + Wm.f++; Wp.f--; + diy_fp_t delta = minus(Wp, Wm); + *K = -mk; + digit_gen(Wp, delta, buffer, &length, K); + return length; } /* - * This routine will convert to arbitrary precision - * floating point entirely in multi-precision fixed. - * The answer is the closest floating point number to - * the given decimal number. Exactly half way are - * rounded ala ieee rules. - * Method is to scale input decimal between .500 and .999... - * with external power of 2, then binary search for the - * closest mantissa to this decimal number. - * Nmant is is the required precision. (53 for ieee dp) - * Nbits is the max number of bits/word. (must be <= 28) - * Prec is calculated - the number of words of fixed mantissa. + * strtod.c + * + * Copyright (c) 1988-1993 The Regents of the University of California. + * Copyright (c) 1994 Sun Microsystems, Inc. + * + * Permission to use, copy, modify, and distribute this software and its + * documentation for any purpose and without fee is hereby granted, provided + * that the above copyright notice appear in all copies. The University of + * California makes no representations about the suitability of this software + * for any purpose. It is provided "as is" without express or implied warranty. */ -enum -{ - Nbits = 28, /* bits safely represented in a ulong */ - Nmant = 53, /* bits of precision required */ - Prec = (Nmant+Nbits+1)/Nbits, /* words of Nbits each to represent mantissa */ - Sigbit = 1<<(Prec*Nbits-Nmant), /* first significant bit of Prec-th word */ - Ndig = 1500, - One = (ulong)(1<>1), - Maxe = 310, - Fsign = 1<<0, /* found - */ - Fesign = 1<<1, /* found e- */ - Fdpoint = 1<<2, /* found . */ +/* Largest possible base 10 exponent. Any exponent larger than this will + * already produce underflow or overflow, so there's no need to worry about + * additional digits. + */ +static int maxExponent = 511; - S0 = 0, /* _ _S0 +S1 #S2 .S3 */ - S1, /* _+ #S2 .S3 */ - S2, /* _+# #S2 .S4 eS5 */ - S3, /* _+. #S4 */ - S4, /* _+#.# #S4 eS5 */ - S5, /* _+#.#e +S6 #S7 */ - S6, /* _+#.#e+ #S7 */ - S7 /* _+#.#e+# #S7 */ -}; - -static int xcmp(char*, char*); -static int fpcmp(char*, ulong*); -static void frnorm(ulong*); -static void divascii(char*, int*, int*, int*); -static void mulascii(char*, int*, int*, int*); - -typedef struct Tab Tab; -struct Tab -{ - int bp; - int siz; - char* cmp; +/* Table giving binary powers of 10. Entry + * is 10^2^i. Used to convert decimal + * exponents into floating-point numbers. + */ +static double powersOf10[] = { + 10., + 100., + 1.0e4, + 1.0e8, + 1.0e16, + 1.0e32, + 1.0e64, + 1.0e128, + 1.0e256 }; +/* Parse a decimal ASCII floating-point number, optionally preceded by white + * space. Must have form "-I.FE-X", where I is the integer part of the + * mantissa, F is the fractional part of the mantissa, and X is the exponent. + * Either of the signs may be "+", "-", or omitted. Either I or F may be + * omitted, or both. The decimal point isn't necessary unless F is present. + * The "E" may actually be an "e". E and X may both be omitted (but not just + * one). + */ double -js_strtod(const char *as, char **aas) +js_strtod(const char *string, char **endPtr) { - int na, ex, dp, bp, c, i, flag, state; - ulong low[Prec], hig[Prec], mid[Prec]; - double d; - char *s, a[Ndig]; + int sign, expSign = FALSE; + double fraction, dblExp, *d; + register const char *p; + register int c; - flag = 0; /* Fsign, Fesign, Fdpoint */ - na = 0; /* number of digits of a[] */ - dp = 0; /* na of decimal point */ - ex = 0; /* exonent */ + /* Exponent read from "EX" field. */ + int exp = 0; - state = S0; - for(s=(char*)as;; s++) { - c = *s; - if(c >= '0' && c <= '9') { - switch(state) { - case S0: - case S1: - case S2: - state = S2; - break; - case S3: - case S4: - state = S4; - break; - - case S5: - case S6: - case S7: - state = S7; - ex = ex*10 + (c-'0'); - continue; - } - if(na == 0 && c == '0') { - dp--; - continue; - } - if(na < Ndig-50) - a[na++] = c; - continue; - } - switch(c) { - case '\t': - case '\n': - case '\v': - case '\f': - case '\r': - case ' ': - if(state == S0) - continue; - break; - case '-': - if(state == S0) - flag |= Fsign; - else - flag |= Fesign; - /* fall through */ - case '+': - if(state == S0) - state = S1; - else - if(state == S5) - state = S6; - else - break; /* syntax */ - continue; - case '.': - flag |= Fdpoint; - dp = na; - if(state == S0 || state == S1) { - state = S3; - continue; - } - if(state == S2) { - state = S4; - continue; - } - break; - case 'e': - case 'E': - if(state == S2 || state == S4) { - state = S5; - continue; - } - break; - } - break; - } - - /* - * clean up return char-pointer + /* Exponent that derives from the fractional part. Under normal + * circumstances, it is the negative of the number of digits in F. + * However, if I is very long, the last digits of I get dropped + * (otherwise a long I with a large negative exponent could cause an + * unnecessary overflow on I alone). In this case, fracExp is + * incremented one for each dropped digit. */ - switch(state) { - case S0: - if(xcmp(s, "nan") == 0) { - if(aas != NULL) - *aas = s+3; - goto retnan; - } - /* fall through */ - case S1: - if(xcmp(s, "infinity") == 0) { - if(aas != NULL) - *aas = s+8; - goto retinf; - } - if(xcmp(s, "inf") == 0) { - if(aas != NULL) - *aas = s+3; - goto retinf; - } - /* fall through */ - case S3: - if(aas != NULL) - *aas = (char*)as; - goto ret0; /* no digits found */ - case S6: - s--; /* back over +- */ - /* fall through */ - case S5: - s--; /* back over e */ - break; - } - if(aas != NULL) - *aas = s; + int fracExp = 0; - if(flag & Fdpoint) - while(na > 0 && a[na-1] == '0') - na--; - if(na == 0) - goto ret0; /* zero */ - a[na] = 0; - if(!(flag & Fdpoint)) - dp = na; - if(flag & Fesign) - ex = -ex; - dp += ex; - if(dp < -Maxe){ - errno = ERANGE; - goto ret0; /* underflow by exp */ - } else - if(dp > +Maxe) - goto retinf; /* overflow by exp */ + /* Number of digits in mantissa. */ + int mantSize; + + /* Number of mantissa digits BEFORE decimal point. */ + int decPt; + + /* Temporarily holds location of exponent in string. */ + const char *pExp; /* - * normalize the decimal ascii number - * to range .[5-9][0-9]* e0 + * Strip off leading blanks and check for a sign. */ - bp = 0; /* binary exponent */ - while(dp > 0) - divascii(a, &na, &dp, &bp); - while(dp < 0 || a[0] < '5') - mulascii(a, &na, &dp, &bp); - /* close approx by naive conversion */ - mid[0] = 0; - mid[1] = 1; - for(i=0; (c=a[i]) != '\0'; i++) { - mid[0] = mid[0]*10 + (c-'0'); - mid[1] = mid[1]*10; - if(i >= 8) - break; + p = string; + while (*p == ' ' || *p == '\t' || *p == '\n' || *p == '\r') { + p += 1; } - low[0] = umuldiv(mid[0], One, mid[1]); - hig[0] = umuldiv(mid[0]+1, One, mid[1]); - for(i=1; i>= 1; + if (*p == '-') { + sign = TRUE; + p += 1; + } else { + if (*p == '+') { + p += 1; } - frnorm(mid); - - /* compare */ - c = fpcmp(a, mid); - if(c > 0) { - c = 1; - for(i=0; i= Sigbit/2) { - mid[Prec-1] += Sigbit; - frnorm(mid); - } - goto out; - -ret0: - if(flag & Fsign) - return -0.0; - return 0; - -retnan: - return NAN; - -retinf: /* - * Unix strtod requires these. Plan 9 would return Inf(0) or Inf(-1). */ - errno = ERANGE; - if(flag & Fsign) - return -HUGE_VAL; - return HUGE_VAL; + * Count the number of digits in the mantissa (including the decimal + * point), and also locate the decimal point. + */ -out: - d = 0; - for(i=0; i='0'&&c<='9')) { + if ((c != '.') || (decPt >= 0)) { + break; + } + decPt = mantSize; + } + p += 1; + } + + /* + * Now suck up the digits in the mantissa. Use two integers to + * collect 9 digits each (this is faster than using floating-point). + * If the mantissa has more than 18 digits, ignore the extras, since + * they can't affect the value anyway. + */ + + pExp = p; + p -= mantSize; + if (decPt < 0) { + decPt = mantSize; + } else { + mantSize -= 1; /* One of the digits was the point. */ + } + if (mantSize > 18) { + fracExp = decPt - 18; + mantSize = 18; + } else { + fracExp = decPt - mantSize; + } + if (mantSize == 0) { + fraction = 0.0; + p = string; + goto done; + } else { + int frac1, frac2; + frac1 = 0; + for ( ; mantSize > 9; mantSize -= 1) + { + c = *p; + p += 1; + if (c == '.') { + c = *p; + p += 1; + } + frac1 = 10*frac1 + (c - '0'); + } + frac2 = 0; + for (; mantSize > 0; mantSize -= 1) + { + c = *p; + p += 1; + if (c == '.') { + c = *p; + p += 1; + } + frac2 = 10*frac2 + (c - '0'); + } + fraction = (1.0e9 * frac1) + frac2; + } + + /* + * Skim off the exponent. + */ + + p = pExp; + if ((*p == 'E') || (*p == 'e')) { + p += 1; + if (*p == '-') { + expSign = TRUE; + p += 1; + } else { + if (*p == '+') { + p += 1; + } + expSign = FALSE; + } + while ((*p >= 0) && (*p <= '9')) { + exp = exp * 10 + (*p - '0'); + p += 1; + } + } + if (expSign) { + exp = fracExp - exp; + } else { + exp = fracExp + exp; + } + + /* + * Generate a floating-point number that represents the exponent. + * Do this by processing the exponent one bit at a time to combine + * many powers of 2 of 10. Then combine the exponent with the + * fraction. + */ + + if (exp < 0) { + expSign = TRUE; + exp = -exp; + } else { + expSign = FALSE; + } + if (exp > maxExponent) { + exp = maxExponent; errno = ERANGE; } - return d; -} - -static void -frnorm(ulong *f) -{ - int i, c; - - c = 0; - for(i=Prec-1; i>0; i--) { - f[i] += c; - c = f[i] >> Nbits; - f[i] &= One-1; - } - f[0] += c; -} - -static int -fpcmp(char *a, ulong* f) -{ - ulong tf[Prec]; - int i, d, c; - - for(i=0; i> Nbits) + '0'; - tf[0] &= One-1; - - /* compare next digit */ - c = *a; - if(c == 0) { - if('0' < d) - return -1; - if(tf[0] != 0) - goto cont; - for(i=1; i>= 1, d += 1) { + if (exp & 01) { + dblExp *= *d; } - if(c > d) - return +1; - if(c < d) - return -1; - a++; - cont:; } -} - -static inline void -divby(char *a, int *na, int b) -{ - int n, c; - char *p; - - p = a; - n = 0; - while(n>>b == 0) { - c = *a++; - if(c == 0) { - while(n) { - c = n*10; - if(c>>b) - break; - n = c; - } - goto xx; - } - n = n*10 + c-'0'; - (*na)--; - } - for(;;) { - c = n>>b; - n -= c<>b; - n -= c<= Ndig) break; /* abort if overflowing */ - } - *p = 0; -} - -static Tab tab1[] = -{ - { 1, 0, "" }, - { 3, 1, "7" }, - { 6, 2, "63" }, - { 9, 3, "511" }, - { 13, 4, "8191" }, - { 16, 5, "65535" }, - { 19, 6, "524287" }, - { 23, 7, "8388607" }, - { 26, 8, "67108863" }, - { 27, 9, "134217727" }, -}; - -static void -divascii(char *a, int *na, int *dp, int *bp) -{ - int b, d; - Tab *t; - - d = *dp; - if(d >= (int)(nelem(tab1))) - d = (int)(nelem(tab1))-1; - t = tab1 + d; - b = t->bp; - if(memcmp(a, t->cmp, t->siz) > 0) - d--; - *dp -= d; - *bp += b; - divby(a, na, b); -} - -static inline void -mulby(char *a, char *p, char *q, int b) -{ - int n, c; - - n = 0; - *p = 0; - for(;;) { - q--; - if(q < a) - break; - c = *q - '0'; - c = (c<= (int)(nelem(tab2))) - d = (int)(nelem(tab2))-1; - t = tab2 + d; - b = t->bp; - if(memcmp(a, t->cmp, t->siz) < 0) - d--; - p = a + *na; - *bp -= b; - *dp += d; - *na += d; - mulby(a, p+d, p, b); -} - -static int -xcmp(char *a, char *b) -{ - int c1, c2; - - while((c1 = *b++) != '\0') { - c2 = *a++; - if(c2 >= 'A' && c2 <= 'Z') - c2 = c2 - 'A' + 'a'; - if(c1 != c2) - return 1; - } - return 0; + if (expSign) { + fraction /= dblExp; + } else { + fraction *= dblExp; + } + +done: + if (endPtr != NULL) { + *endPtr = (char *) p; + } + + if (sign) { + return -fraction; + } + return fraction; } diff --git a/jsi.h b/jsi.h index 57ba1f2..10aa582 100644 --- a/jsi.h +++ b/jsi.h @@ -87,7 +87,7 @@ void jsS_freestrings(js_State *J); /* Portable strtod and printf float formatting */ void js_fmtexp(char *p, int e); -void js_dtoa(double f, char *digits, int *exp, int *neg, int *ndigits); +int js_grisu2(double v, char *buffer, int *K); double js_strtod(const char *as, char **aas); /* Private stack functions */ diff --git a/jsvalue.c b/jsvalue.c index 141acd6..51daf9b 100644 --- a/jsvalue.c +++ b/jsvalue.c @@ -220,16 +220,16 @@ double jsV_tointeger(js_State *J, js_Value *v) const char *jsV_numbertostring(js_State *J, char buf[32], double f) { char digits[32], *p = buf, *s = digits; - int exp, neg, ndigits, point; + int exp, ndigits, point; if (isnan(f)) return "NaN"; if (isinf(f)) return f < 0 ? "-Infinity" : "Infinity"; if (f == 0) return "0"; - js_dtoa(f, digits, &exp, &neg, &ndigits); + ndigits = js_grisu2(f, digits, &exp); point = ndigits + exp; - if (neg) + if (signbit(f)) *p++ = '-'; if (point < -5 || point > 21) {