mirror of
https://github.com/grblHAL/core.git
synced 2026-02-06 09:02:33 +08:00
Added definitions for up to four additional digital aux I/O ports. Added real time report of selected spindle in multi spindle configurations. Reported on changes only. Removed limits override input invert config, for safety reasons it is always active low. Added HAL entry points for second RGB channel, renamed first from hal.rgb to hal.rgb0. Added option to setting $22 to force use of limit switches for homing when homing inputs are available in the driver/board combo. Improved handling of aux I/O pins when claimed for core functions. Added flag to $9 for disabling laser mode capability for primary PWM spindle. Allows leaving laser mode enabled when a secondary PWM spindle is available and this is used to control a laser. Added some generic setting definitions for stepper drivers, currently used by the motors plugin.
790 lines
32 KiB
C
790 lines
32 KiB
C
/*
|
|
machine_limits.c - code pertaining to limit-switches and performing the homing cycle
|
|
|
|
Part of grblHAL
|
|
|
|
Copyright (c) 2017-2024 Terje Io
|
|
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
|
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
|
|
grblHAL is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
grblHAL is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "hal.h"
|
|
#include "nuts_bolts.h"
|
|
#include "protocol.h"
|
|
#include "motion_control.h"
|
|
#include "machine_limits.h"
|
|
#include "tool_change.h"
|
|
#include "state_machine.h"
|
|
#ifdef KINEMATICS_API
|
|
#include "kinematics.h"
|
|
#endif
|
|
|
|
#include "config.h"
|
|
|
|
// Merge (bitwise or) all limit switch inputs.
|
|
ISR_CODE axes_signals_t ISR_FUNC(limit_signals_merge)(limit_signals_t signals)
|
|
{
|
|
axes_signals_t state;
|
|
|
|
state.mask = signals.min.mask | signals.min2.mask | signals.max.mask | signals.max2.mask;
|
|
|
|
return state;
|
|
}
|
|
|
|
// Merge (bitwise or) home switch inputs (typically acquired from limits.min and limits.min2).
|
|
ISR_CODE static axes_signals_t ISR_FUNC(homing_signals_select)(home_signals_t signals, axes_signals_t auto_square, squaring_mode_t mode)
|
|
{
|
|
axes_signals_t state;
|
|
|
|
switch(mode) {
|
|
|
|
case SquaringMode_A:
|
|
signals.a.mask &= ~auto_square.mask;
|
|
break;
|
|
|
|
case SquaringMode_B:
|
|
signals.b.mask &= ~auto_square.mask;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
state.mask = signals.a.mask | signals.b.mask;
|
|
|
|
return state;
|
|
}
|
|
|
|
// This is the Limit Pin Change Interrupt, which handles the hard limit feature. A bouncing
|
|
// limit switch can cause a lot of problems, like false readings and multiple interrupt calls.
|
|
// If a switch is triggered at all, something bad has happened and treat it as such, regardless
|
|
// if a limit switch is being disengaged. It's impossible to reliably tell the state of a
|
|
// bouncing pin because the microcontroller does not retain any state information when
|
|
// detecting a pin change. If we poll the pins in the ISR, you can miss the correct reading if the
|
|
// switch is bouncing.
|
|
ISR_CODE void ISR_FUNC(limit_interrupt_handler)(limit_signals_t state) // DEFAULT: Limit pin change interrupt process.
|
|
{
|
|
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
|
|
// When in the alarm state, grblHAL should have been reset or will force a reset, so any pending
|
|
// moves in the planner and stream input buffers are all cleared and newly sent blocks will be
|
|
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
|
|
// limit setting if their limits are constantly triggering after a reset and move their axes.
|
|
|
|
#if N_AXIS > 3
|
|
if((limit_signals_merge(state).value & sys.hard_limits.mask) == 0)
|
|
return;
|
|
#endif
|
|
|
|
memcpy(&sys.last_event.limits, &state, sizeof(limit_signals_t));
|
|
|
|
if (!(state_get() & (STATE_ALARM|STATE_ESTOP)) && !sys.rt_exec_alarm) {
|
|
|
|
#if HARD_LIMIT_FORCE_STATE_CHECK
|
|
// Check limit pin state.
|
|
if (limit_signals_merge(state).value) {
|
|
mc_reset(); // Initiate system kill.
|
|
system_set_exec_alarm(Alarm_HardLimit); // Indicate hard limit critical event
|
|
}
|
|
#else
|
|
mc_reset(); // Initiate system kill.
|
|
system_set_exec_alarm(Alarm_HardLimit); // Indicate hard limit critical event
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Establish work envelope for homed axes, used by soft limits and jog limits handling.
|
|
// When hard limits are enabled pulloff distance is subtracted to avoid triggering limit switches.
|
|
void limits_set_work_envelope (void)
|
|
{
|
|
uint_fast8_t idx = N_AXIS;
|
|
|
|
do {
|
|
if(sys.homed.mask & bit(--idx)) {
|
|
|
|
float pulloff = settings.limits.flags.hard_enabled && bit_istrue(sys.homing.mask, bit(idx)) ? settings.homing.pulloff : 0.0f;
|
|
|
|
if(settings.homing.flags.force_set_origin) {
|
|
if(bit_isfalse(settings.homing.dir_mask.value, bit(idx))) {
|
|
sys.work_envelope.min.values[idx] = settings.axis[idx].max_travel + pulloff;
|
|
sys.work_envelope.max.values[idx] = 0.0f;
|
|
} else {
|
|
sys.work_envelope.min.values[idx] = 0.0f;
|
|
sys.work_envelope.max.values[idx] = - (settings.axis[idx].max_travel + pulloff);
|
|
}
|
|
} else {
|
|
sys.work_envelope.min.values[idx] = settings.axis[idx].max_travel + pulloff;
|
|
sys.work_envelope.max.values[idx] = - pulloff;
|
|
}
|
|
} else
|
|
sys.work_envelope.min.values[idx] = sys.work_envelope.max.values[idx] = 0.0f;
|
|
} while(idx);
|
|
}
|
|
|
|
#ifndef KINEMATICS_API
|
|
|
|
// Set machine positions for homed limit switches. Don't update non-homed axes.
|
|
// NOTE: settings.max_travel[] is stored as a negative value.
|
|
void limits_set_machine_positions (axes_signals_t cycle, bool add_pulloff)
|
|
{
|
|
uint_fast8_t idx = N_AXIS;
|
|
float pulloff = add_pulloff ? settings.homing.pulloff : -0.0f;
|
|
|
|
if(settings.homing.flags.force_set_origin) {
|
|
do {
|
|
if (cycle.mask & bit(--idx)) {
|
|
sys.position[idx] = 0;
|
|
sys.home_position[idx] = 0.0f;
|
|
}
|
|
} while(idx);
|
|
} else do {
|
|
if (cycle.mask & bit(--idx)) {
|
|
sys.home_position[idx] = bit_istrue(settings.homing.dir_mask.value, bit(idx))
|
|
? settings.axis[idx].max_travel + pulloff
|
|
: - pulloff;
|
|
sys.position[idx] = lroundf(sys.home_position[idx] * settings.axis[idx].steps_per_mm);
|
|
}
|
|
} while(idx);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Pulls off axes from asserted homing switches before homing starts.
|
|
// For now only for auto squared axes.
|
|
static bool limits_pull_off (axes_signals_t axis, float distance)
|
|
{
|
|
uint_fast8_t n_axis = 0, idx = N_AXIS;
|
|
coord_data_t target = {0};
|
|
plan_line_data_t plan_data;
|
|
|
|
plan_data_init(&plan_data);
|
|
plan_data.condition.system_motion = On;
|
|
plan_data.condition.no_feed_override = On;
|
|
plan_data.line_number = DEFAULT_HOMING_CYCLE_LINE_NUMBER;
|
|
|
|
system_convert_array_steps_to_mpos(target.values, sys.position);
|
|
|
|
do {
|
|
idx--;
|
|
if(bit_istrue(axis.mask, bit(idx))) {
|
|
n_axis++;
|
|
if (bit_istrue(settings.homing.dir_mask.value, bit(idx)))
|
|
target.values[idx] += distance;
|
|
else
|
|
target.values[idx] -= distance;
|
|
}
|
|
} while(idx);
|
|
|
|
plan_data.feed_rate = settings.homing.seek_rate * sqrtf(n_axis); // Adjust so individual axes all move at pull-off rate.
|
|
plan_data.condition.coolant = gc_state.modal.coolant;
|
|
memcpy(&plan_data.spindle, &gc_state.spindle, sizeof(spindle_t));
|
|
|
|
#ifdef KINEMATICS_API
|
|
coord_data_t k_target;
|
|
plan_buffer_line(kinematics.transform_from_cartesian(k_target.values, target.values), &plan_data); // Bypass mc_line(). Directly plan homing motion.;
|
|
#else
|
|
plan_buffer_line(target.values, &plan_data); // Bypass mc_line(). Directly plan homing motion.
|
|
#endif
|
|
|
|
sys.step_control.flags = 0; // Clear existing flags and
|
|
sys.step_control.execute_sys_motion = On; // set to execute homing motion.
|
|
sys.homing_axis_lock.mask = axis.mask;
|
|
|
|
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
|
|
st_wake_up(); // Initiate motion.
|
|
|
|
while(true) {
|
|
|
|
st_prep_buffer(); // Check and prep segment buffer.
|
|
|
|
// Exit routines: No time to run protocol_execute_realtime() in this loop.
|
|
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_COMPLETE)) {
|
|
|
|
uint_fast16_t rt_exec = sys.rt_exec_state;
|
|
|
|
// Homing failure condition: Reset issued during cycle.
|
|
if (rt_exec & EXEC_RESET)
|
|
system_set_exec_alarm(Alarm_HomingFailReset);
|
|
|
|
// Homing failure condition: Safety door was opened.
|
|
if (rt_exec & EXEC_SAFETY_DOOR)
|
|
system_set_exec_alarm(Alarm_HomingFailDoor);
|
|
|
|
// Homing failure condition: Homing switch(es) still engaged after pull-off motion
|
|
if (homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask & axis.mask)
|
|
system_set_exec_alarm(Alarm_FailPulloff);
|
|
|
|
if (sys.rt_exec_alarm) {
|
|
mc_reset(); // Stop motors, if they are running.
|
|
protocol_execute_realtime();
|
|
return false;
|
|
} else {
|
|
// Pull-off motion complete. Disable CYCLE_STOP from executing.
|
|
system_clear_exec_state_flag(EXEC_CYCLE_COMPLETE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
grbl.on_execute_realtime(STATE_HOMING);
|
|
}
|
|
|
|
st_reset(); // Immediately force kill steppers and reset step segment buffer.
|
|
|
|
sys.step_control.flags = 0; // Return step control to normal operation.
|
|
|
|
return true; // Note: failure is returned above if move fails.
|
|
}
|
|
|
|
// Homes the specified cycle axes, sets the machine position, and performs a pull-off motion after
|
|
// completing. Homing is a special motion case, which involves rapid uncontrolled stops to locate
|
|
// the trigger point of the limit switches. The rapid stops are handled by a system level axis lock
|
|
// mask, which prevents the stepper algorithm from executing step pulses. Homing motions typically
|
|
// circumvent the processes for executing motions in normal operation.
|
|
// NOTE: Only the abort realtime command can interrupt this process.
|
|
static bool homing_cycle (axes_signals_t cycle, axes_signals_t auto_square)
|
|
{
|
|
if (ABORTED) // Block if system reset has been issued.
|
|
return false;
|
|
|
|
int32_t initial_trigger_position = 0, autosquare_fail_distance = 0;
|
|
uint_fast8_t n_cycle = (2 * settings.homing.locate_cycles + 1);
|
|
uint_fast8_t step_pin[N_AXIS], n_active_axis, dual_motor_axis = 0;
|
|
bool autosquare_check = false;
|
|
float max_travel = 0.0f, homing_rate;
|
|
homing_mode_t mode = HomingMode_Seek;
|
|
axes_signals_t axislock, homing_state;
|
|
home_signals_t signals_state;
|
|
squaring_mode_t squaring_mode = SquaringMode_Both;
|
|
coord_data_t target;
|
|
plan_line_data_t plan_data;
|
|
|
|
plan_data_init(&plan_data);
|
|
plan_data.condition.system_motion = On;
|
|
plan_data.condition.no_feed_override = On;
|
|
plan_data.line_number = DEFAULT_HOMING_CYCLE_LINE_NUMBER;
|
|
|
|
// Initialize plan data struct for homing motion.
|
|
memcpy(&plan_data.spindle, &gc_state.spindle, sizeof(spindle_t));
|
|
plan_data.condition.coolant = gc_state.modal.coolant;
|
|
|
|
uint_fast8_t idx = N_AXIS;
|
|
do {
|
|
idx--;
|
|
// Initialize step pin masks
|
|
#ifdef KINEMATICS_API
|
|
step_pin[idx] = kinematics.limits_get_axis_mask(idx);
|
|
#else
|
|
step_pin[idx] = bit(idx);
|
|
#endif
|
|
// Set target based on max_travel setting. Ensure homing switches engaged with search scalar.
|
|
// NOTE: settings.axis[].max_travel is stored as a negative value.
|
|
if(bit_istrue(cycle.mask, bit(idx))) {
|
|
#if N_AXIS > 3
|
|
if(bit_istrue(settings.steppers.is_rotational.mask, bit(idx)))
|
|
max_travel = max(max_travel, (-HOMING_AXIS_SEARCH_SCALAR) * (settings.axis[idx].max_travel < -0.0f ? settings.axis[idx].max_travel : -360.0f));
|
|
else
|
|
#endif
|
|
max_travel = max(max_travel, (-HOMING_AXIS_SEARCH_SCALAR) * settings.axis[idx].max_travel);
|
|
|
|
if(bit_istrue(auto_square.mask, bit(idx)))
|
|
dual_motor_axis = idx;
|
|
}
|
|
} while(idx);
|
|
|
|
if(max_travel == 0.0f)
|
|
return true;
|
|
|
|
if((homing_rate = hal.homing.get_feedrate(cycle, HomingMode_Seek)) == 0.0f)
|
|
return false;
|
|
|
|
if(auto_square.mask) {
|
|
float fail_distance = (-settings.homing.dual_axis.fail_length_percent / 100.0f) * settings.axis[dual_motor_axis].max_travel;
|
|
fail_distance = min(fail_distance, settings.homing.dual_axis.fail_distance_max);
|
|
fail_distance = max(fail_distance, settings.homing.dual_axis.fail_distance_min);
|
|
autosquare_fail_distance = truncf(fail_distance * settings.axis[dual_motor_axis].steps_per_mm);
|
|
}
|
|
|
|
// Set search mode with approach at seek rate to quickly engage the specified cycle.mask limit switches.
|
|
do {
|
|
|
|
// Initialize and declare variables needed for homing routine.
|
|
system_convert_array_steps_to_mpos(target.values, sys.position);
|
|
axislock = (axes_signals_t){0};
|
|
n_active_axis = 0;
|
|
|
|
idx = N_AXIS;
|
|
do {
|
|
// Set target location for active axes and setup computation for homing rate.
|
|
if (bit_istrue(cycle.mask, bit(--idx))) {
|
|
n_active_axis++;
|
|
|
|
#ifdef KINEMATICS_API
|
|
kinematics.limits_set_target_pos(idx);
|
|
#else
|
|
sys.position[idx] = 0;
|
|
#endif
|
|
// Set target direction based on cycle mask and homing cycle approach state.
|
|
if (bit_istrue(settings.homing.dir_mask.value, bit(idx)))
|
|
target.values[idx] = mode == HomingMode_Pulloff ? max_travel : - max_travel;
|
|
else
|
|
target.values[idx] = mode == HomingMode_Pulloff ? - max_travel : max_travel;
|
|
|
|
// Apply axislock to the step port pins active in this cycle.
|
|
axislock.mask |= step_pin[idx];
|
|
}
|
|
} while(idx);
|
|
|
|
#ifdef KINEMATICS_API
|
|
if(kinematics.homing_cycle_get_feedrate)
|
|
homing_rate = kinematics.homing_cycle_get_feedrate(cycle, homing_rate, mode);
|
|
#endif
|
|
|
|
if(grbl.on_homing_rate_set)
|
|
grbl.on_homing_rate_set(cycle, homing_rate, mode);
|
|
|
|
homing_rate *= sqrtf(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
|
|
|
|
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
|
|
plan_data.feed_rate = homing_rate; // Set current homing rate.
|
|
sys.homing_axis_lock.mask = axislock.mask;
|
|
|
|
#ifdef KINEMATICS_API
|
|
coord_data_t k_target;
|
|
plan_buffer_line(kinematics.transform_from_cartesian(k_target.values, target.values), &plan_data); // Bypass mc_line(). Directly plan homing motion.;
|
|
#else
|
|
plan_buffer_line(target.values, &plan_data); // Bypass mc_line(). Directly plan homing motion.
|
|
#endif
|
|
|
|
sys.step_control.flags = 0;
|
|
sys.step_control.execute_sys_motion = On; // Set to execute homing motion and clear existing flags.
|
|
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
|
|
st_wake_up(); // Initiate motion
|
|
|
|
do {
|
|
|
|
if (mode != HomingMode_Pulloff) {
|
|
|
|
// Check homing switches state. Lock out cycle axes when they change.
|
|
homing_state = homing_signals_select(signals_state = hal.homing.get_state(), auto_square, squaring_mode);
|
|
|
|
// Auto squaring check
|
|
if((homing_state.mask & auto_square.mask) && squaring_mode == SquaringMode_Both) {
|
|
if((autosquare_check = (signals_state.a.mask & auto_square.mask) != (signals_state.b.mask & auto_square.mask))) {
|
|
initial_trigger_position = sys.position[dual_motor_axis];
|
|
homing_state.mask &= ~auto_square.mask;
|
|
squaring_mode = (signals_state.a.mask & auto_square.mask) ? SquaringMode_A : SquaringMode_B;
|
|
hal.stepper.disable_motors(auto_square, squaring_mode);
|
|
}
|
|
}
|
|
|
|
idx = N_AXIS;
|
|
do {
|
|
idx--;
|
|
if ((axislock.mask & step_pin[idx]) && (homing_state.mask & bit(idx))) {
|
|
#ifdef KINEMATICS_API
|
|
axislock.mask &= ~kinematics.limits_get_axis_mask(idx);
|
|
#else
|
|
axislock.mask &= ~bit(idx);
|
|
#endif
|
|
if(idx == dual_motor_axis)
|
|
autosquare_check = false;
|
|
}
|
|
} while(idx);
|
|
|
|
sys.homing_axis_lock.mask = axislock.mask;
|
|
|
|
if (autosquare_check && abs(initial_trigger_position - sys.position[dual_motor_axis]) > autosquare_fail_distance) {
|
|
system_set_exec_alarm(Alarm_HomingFailAutoSquaringApproach);
|
|
mc_reset();
|
|
protocol_execute_realtime();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
st_prep_buffer(); // Check and prep segment buffer.
|
|
|
|
// Exit routines: No time to run protocol_execute_realtime() in this loop.
|
|
if (sys.rt_exec_state & (EXEC_SAFETY_DOOR | EXEC_RESET | EXEC_CYCLE_COMPLETE)) {
|
|
|
|
uint_fast16_t rt_exec = sys.rt_exec_state;
|
|
|
|
// Homing failure condition: Reset issued during cycle.
|
|
if (rt_exec & EXEC_RESET)
|
|
system_set_exec_alarm(Alarm_HomingFailReset);
|
|
|
|
// Homing failure condition: Safety door was opened.
|
|
if (rt_exec & EXEC_SAFETY_DOOR)
|
|
system_set_exec_alarm(Alarm_HomingFailDoor);
|
|
|
|
hal.delay_ms(2, NULL);
|
|
|
|
// Homing failure condition: Homing switch(es) still engaged after pull-off motion
|
|
if (mode == HomingMode_Pulloff && (homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask & cycle.mask))
|
|
system_set_exec_alarm(Alarm_FailPulloff);
|
|
|
|
// Homing failure condition: Limit switch not found during approach.
|
|
if (mode != HomingMode_Pulloff && (rt_exec & EXEC_CYCLE_COMPLETE))
|
|
system_set_exec_alarm(Alarm_HomingFailApproach);
|
|
|
|
if (sys.rt_exec_alarm) {
|
|
mc_reset(); // Stop motors, if they are running.
|
|
protocol_execute_realtime();
|
|
return false;
|
|
} else {
|
|
// Pull-off motion complete. Disable CYCLE_STOP from executing.
|
|
system_clear_exec_state_flag(EXEC_CYCLE_COMPLETE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
grbl.on_execute_realtime(STATE_HOMING);
|
|
|
|
} while (axislock.mask & AXES_BITMASK);
|
|
|
|
st_reset(); // Immediately force kill steppers and reset step segment buffer.
|
|
hal.delay_ms(settings.homing.debounce_delay, NULL); // Delay to allow transient dynamics to dissipate.
|
|
|
|
// Reverse direction and reset homing rate for cycle(s).
|
|
mode = mode == HomingMode_Pulloff ? HomingMode_Locate : HomingMode_Pulloff;
|
|
homing_rate = hal.homing.get_feedrate(cycle, mode);
|
|
|
|
// After first cycle, homing enters locating phase. Shorten search to pull-off distance.
|
|
if (mode == HomingMode_Locate) {
|
|
// Only one initial pass for auto squared axis when both motors are active
|
|
//if(mode == SquaringMode_Both && auto_square.mask)
|
|
// cycle.mask &= ~auto_square.mask;
|
|
max_travel = settings.homing.pulloff * HOMING_AXIS_LOCATE_SCALAR;
|
|
} else
|
|
max_travel = settings.homing.pulloff;
|
|
|
|
if(auto_square.mask) {
|
|
autosquare_check = false;
|
|
squaring_mode = SquaringMode_Both;
|
|
hal.stepper.disable_motors((axes_signals_t){0}, SquaringMode_Both);
|
|
}
|
|
|
|
} while (homing_rate > 0.0f && cycle.mask && n_cycle-- > 0);
|
|
|
|
// Pull off B motor to compensate for switch inaccuracy when configured.
|
|
if(auto_square.mask && settings.axis[dual_motor_axis].dual_axis_offset != 0.0f) {
|
|
hal.stepper.disable_motors(auto_square, settings.axis[dual_motor_axis].dual_axis_offset < 0.0f ? SquaringMode_B : SquaringMode_A);
|
|
if(!limits_pull_off(auto_square, fabs(settings.axis[dual_motor_axis].dual_axis_offset)))
|
|
return false;
|
|
hal.stepper.disable_motors((axes_signals_t){0}, SquaringMode_Both);
|
|
}
|
|
|
|
// The active cycle axes should now be homed and machine limits have been located. By
|
|
// default, grblHAL defines machine space as all negative, as do most CNCs. Since limit switches
|
|
// can be on either side of an axes, check and set axes machine zero appropriately. Also,
|
|
// set up pull-off maneuver from axes limit switches that have been homed. This provides
|
|
// some initial clearance off the switches and should also help prevent them from falsely
|
|
// triggering when hard limits are enabled or when more than one axes shares a limit pin.
|
|
#ifdef KINEMATICS_API
|
|
kinematics.limits_set_machine_positions(cycle);
|
|
#else
|
|
limits_set_machine_positions(cycle, true);
|
|
#endif
|
|
|
|
#if ENABLE_BACKLASH_COMPENSATION
|
|
mc_backlash_init(cycle);
|
|
#endif
|
|
sys.step_control.flags = 0; // Return step control to normal operation.
|
|
sys.homed.mask |= cycle.mask;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Perform homing cycle(s) according to configuration.
|
|
// NOTE: only one auto squared axis can be homed at a time.
|
|
status_code_t limits_go_home (axes_signals_t cycle)
|
|
{
|
|
axes_signals_t auto_square = {0}, auto_squared = {0};
|
|
|
|
hal.limits.enable(settings.limits.flags.hard_enabled, cycle); // Disable hard limits pin change register for cycle duration
|
|
|
|
if(hal.stepper.get_ganged)
|
|
auto_squared = hal.stepper.get_ganged(true);
|
|
|
|
auto_squared.mask &= cycle.mask;
|
|
|
|
if(auto_squared.mask) {
|
|
|
|
if(!hal.stepper.disable_motors)
|
|
return Status_IllegalHomingConfiguration; // Bad driver! - should not happen.
|
|
|
|
auto_square.x = On;
|
|
while(!(auto_squared.mask & auto_square.mask))
|
|
auto_square.mask <<= 1;
|
|
|
|
if(auto_squared.mask != auto_square.mask)
|
|
return Status_IllegalHomingConfiguration; // Attempt at squaring more than one auto squared axis at the same time.
|
|
|
|
if((auto_squared.mask & homing_signals_select(hal.homing.get_state(), (axes_signals_t){0}, SquaringMode_Both).mask) && !limits_pull_off(auto_square, settings.homing.pulloff * HOMING_AXIS_LOCATE_SCALAR))
|
|
return Status_LimitsEngaged; // Auto squaring with limit switch asserted is not allowed.
|
|
}
|
|
|
|
return grbl.home_machine(cycle, auto_square) ? Status_OK : Status_Unhandled;
|
|
}
|
|
|
|
// Performs a soft limit check. Called from mc_line() only. Assumes the machine has been homed,
|
|
// the workspace volume is in all negative space, and the system is in normal operation.
|
|
// NOTE: Also used by jogging to block travel outside soft-limit volume.
|
|
void limits_soft_check (float *target, planner_cond_t condition)
|
|
{
|
|
#ifdef KINEMATICS_API
|
|
if(condition.target_validated ? !condition.target_valid : !grbl.check_travel_limits(target, sys.soft_limits, false)) {
|
|
#else
|
|
if(condition.target_validated ? !condition.target_valid : !grbl.check_travel_limits(target, sys.soft_limits, true)) {
|
|
#endif
|
|
|
|
sys.flags.soft_limit = On;
|
|
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
|
|
// workspace volume so just come to a controlled stop so position is not lost. When complete
|
|
// enter alarm mode.
|
|
if(state_get() == STATE_CYCLE) {
|
|
system_set_exec_state_flag(EXEC_FEED_HOLD);
|
|
do {
|
|
if(!protocol_execute_realtime())
|
|
return; // aborted!
|
|
} while(state_get() != STATE_IDLE);
|
|
}
|
|
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
|
|
system_set_exec_alarm(Alarm_SoftLimit); // Indicate soft limit critical event
|
|
protocol_execute_realtime(); // Execute to enter critical event loop and system abort
|
|
}
|
|
}
|
|
|
|
// Set axes to be homed from settings.
|
|
void limits_set_homing_axes (void)
|
|
{
|
|
uint_fast8_t idx = N_AXIS;
|
|
|
|
sys.homing.mask = 0;
|
|
|
|
do {
|
|
sys.homing.mask |= settings.homing.cycle[--idx].mask;
|
|
} while(idx);
|
|
|
|
sys.homed.mask &= sys.homing.mask;
|
|
}
|
|
|
|
// Check if homing is required.
|
|
bool limits_homing_required (void)
|
|
{
|
|
return settings.homing.flags.enabled && settings.homing.flags.init_lock &&
|
|
(sys.cold_start || !settings.homing.flags.override_locks) &&
|
|
sys.homing.mask && (sys.homing.mask & sys.homed.mask) != sys.homing.mask;
|
|
}
|
|
|
|
static float get_homing_rate (axes_signals_t cycle, homing_mode_t mode)
|
|
{
|
|
return mode == HomingMode_Locate ? settings.homing.feed_rate : settings.homing.seek_rate;
|
|
}
|
|
|
|
// Checks and reports if target array exceeds machine travel limits. Returns false if check failed.
|
|
static bool check_travel_limits (float *target, axes_signals_t axes, bool is_cartesian)
|
|
{
|
|
bool failed = false;
|
|
uint_fast8_t idx = N_AXIS;
|
|
|
|
if(is_cartesian && (sys.homed.mask & axes.mask)) do {
|
|
idx--;
|
|
if(bit_istrue(sys.homed.mask, bit(idx)) && bit_istrue(axes.mask, bit(idx)))
|
|
failed = target[idx] < sys.work_envelope.min.values[idx] || target[idx] > sys.work_envelope.max.values[idx];
|
|
} while(!failed && idx);
|
|
|
|
return is_cartesian && !failed;
|
|
}
|
|
|
|
// Checks and reports if the arc exceeds machine travel limits. Returns false if check failed.
|
|
// NOTE: needs the work envelope to be a cuboid!
|
|
static bool check_arc_travel_limits (coord_data_t *target, coord_data_t *position, point_2d_t center, float radius, plane_t plane, int32_t turns)
|
|
{
|
|
typedef union {
|
|
uint_fast8_t value;
|
|
struct {
|
|
uint_fast8_t pos_y : 1,
|
|
neg_x : 1,
|
|
neg_y : 1,
|
|
pos_x : 1;
|
|
};
|
|
} arc_x_t;
|
|
|
|
static const axes_signals_t xyz = { .x = On, .y = On, .z = On };
|
|
|
|
if((sys.soft_limits.mask & xyz.mask) == 0)
|
|
return grbl.check_travel_limits(target->values, sys.soft_limits, true);
|
|
|
|
arc_x_t x = {0};
|
|
point_2d_t start, end;
|
|
|
|
// Set arc start and end points centered at 0,0 and convert CW arcs to CCW.
|
|
if(turns > 0) { // CCW
|
|
start.x = position->values[plane.axis_0] - center.x;
|
|
start.y = position->values[plane.axis_1] - center.y;
|
|
end.x = target->values[plane.axis_0] - center.x;
|
|
end.y = target->values[plane.axis_1] - center.y;
|
|
} else { // CW
|
|
start.x = target->values[plane.axis_0] - center.x;
|
|
start.y = target->values[plane.axis_1] - center.y;
|
|
end.x = position->values[plane.axis_0] - center.x;
|
|
end.y = position->values[plane.axis_1] - center.y;
|
|
}
|
|
|
|
if(labs(turns > 1))
|
|
x.value = 0b1111; // Crosses all
|
|
else if(start.y >= 0.0f) {
|
|
if(start.x > 0.0f) { // Starts in Q1
|
|
if(end.y >= 0.0f) {
|
|
if(end.x <= 0.0f)
|
|
x.value = 0b0001; // Ends in Q2
|
|
else if(end.x >= start.x)
|
|
x.value = 0b1111; // Ends in Q1, crosses all
|
|
} else if(end.x <= 0.0f)
|
|
x.value = 0b0011; // Ends in Q3
|
|
else
|
|
x.value = 0b0111; // Ends in Q4
|
|
} else { // Starts in Q2
|
|
if(end.y >= 0.0f) {
|
|
if(end.x > 0.0f)
|
|
x.value = 0b1110; // Ends in Q1
|
|
else if(end.x >= start.x)
|
|
x.value = 0b1111; // Ends in Q2, crosses all
|
|
} else if(end.x <= 0.0f)
|
|
x.value = 0b0010; // Ends in Q3
|
|
else
|
|
x.value = 0b0110; // Ends in Q4
|
|
}
|
|
} else if(start.x < 0.0f) { // Starts in Q3
|
|
if(end.y < 0.0f) {
|
|
if(end.x > 0.0f)
|
|
x.value = 0b0100; // Ends in Q4
|
|
else if(end.x <= start.x)
|
|
x.value = 0b1111; // Ends in Q3, crosses all
|
|
} else if(end.x > 0.0f)
|
|
x.value = 0b1100; // Ends in Q1
|
|
else
|
|
x.value = 0b1101; // Ends in Q2
|
|
} else { // Starts in Q4
|
|
if(end.y < 0.0f) {
|
|
if(end.x < 0.0f)
|
|
x.value = 0b1011; // Ends in Q3
|
|
else if(end.x <= start.x)
|
|
x.value = 0b1111; // Ends in Q4, crosses all
|
|
} else if(end.x > 0.0f)
|
|
x.value = 0b1000; // Ends in Q1
|
|
else
|
|
x.value = 0b1001; // Ends in Q2
|
|
}
|
|
|
|
coord_data_t corner1, corner2;
|
|
|
|
memcpy(&corner1, turns > 0 ? position : target, sizeof(coord_data_t));
|
|
corner1.values[plane.axis_0] = x.neg_x ? center.x - radius : min(position->values[plane.axis_0], target->values[plane.axis_0]);
|
|
corner1.values[plane.axis_1] = x.neg_y ? center.y - radius : max(position->values[plane.axis_1], target->values[plane.axis_1]);
|
|
|
|
if(!grbl.check_travel_limits(corner1.values, sys.soft_limits, true))
|
|
return false;
|
|
|
|
memcpy(&corner2, turns > 0 ? target : position, sizeof(coord_data_t));
|
|
corner2.values[plane.axis_0] = x.pos_x ? center.x + radius : max(position->values[plane.axis_0], target->values[plane.axis_0]);
|
|
corner2.values[plane.axis_1] = x.pos_y ? center.y + radius : min(position->values[plane.axis_1], target->values[plane.axis_1]);
|
|
|
|
return grbl.check_travel_limits(corner2.values, sys.soft_limits, true);
|
|
}
|
|
|
|
// Derived from code by Dimitrios Matthes & Vasileios Drakopoulos
|
|
// https://www.mdpi.com/1999-4893/16/4/201
|
|
static void clip_3d_target (coord_data_t *position, coord_data_t *target, work_envelope_t *envelope)
|
|
{
|
|
float a = target->x - position->x;
|
|
float b = target->y - position->y;
|
|
float c = target->z - position->z;
|
|
|
|
if(target->x < envelope->min.x) {
|
|
target->y = b / a * (envelope->min.x - position->x) + position->y;
|
|
target->z = c / a * (envelope->min.x - position->x) + position->z;
|
|
target->x = envelope->min.x;
|
|
} else if(target->x > envelope->max.x) {
|
|
target->y = b / a * (envelope->max.x - position->x) + position->y;
|
|
target->z = c / a * (envelope->max.x - position->x) + position->z;
|
|
target->x = envelope->max.x;
|
|
}
|
|
|
|
if(target->y < envelope->min.y) {
|
|
target->x = a / b * (envelope->min.y - position->y) + position->x;
|
|
target->z = c / b * (envelope->min.y - position->y) + position->z;
|
|
target->y = envelope->min.y;
|
|
} else if(target->y > envelope->max.y) {
|
|
target->x = a / b * (envelope->max.y - position->y) + position->x;
|
|
target->z = c / b * (envelope->max.y - position->y) + position->z;
|
|
target->y = envelope->max.y;
|
|
}
|
|
|
|
if(target->z < envelope->min.z) {
|
|
target->x = a / c * (envelope->min.z - position->z) + position->x;
|
|
target->y = b / c * (envelope->min.z - position->z) + position->y;
|
|
target->z = envelope->min.z;
|
|
} else if(target->z > envelope->max.z) {
|
|
target->x = a / c * (envelope->max.z - position->z) + position->x;
|
|
target->y = b / c * (envelope->max.z - position->z) + position->y;
|
|
target->z = envelope->max.z;
|
|
}
|
|
}
|
|
|
|
// Limits jog commands to be within machine limits, homed axes only.
|
|
static void apply_jog_limits (float *target, float *position)
|
|
{
|
|
if(sys.homed.mask == 0)
|
|
return;
|
|
|
|
uint_fast8_t idx;
|
|
|
|
if((sys.homed.mask & 0b111) == 0b111) {
|
|
|
|
uint_fast8_t n_axes = 0;
|
|
|
|
idx = Z_AXIS + 1;
|
|
do {
|
|
idx--;
|
|
if(fabs(target[idx] - position[idx]) > 0.001f)
|
|
n_axes++;
|
|
} while(idx && n_axes < 2);
|
|
|
|
if(n_axes > 1)
|
|
clip_3d_target((coord_data_t *)position, (coord_data_t *)target, &sys.work_envelope);
|
|
}
|
|
|
|
idx = N_AXIS;
|
|
do {
|
|
idx--;
|
|
if(bit_istrue(sys.homed.mask, bit(idx)) && settings.axis[idx].max_travel < -0.0f)
|
|
target[idx] = max(min(target[idx], sys.work_envelope.max.values[idx]), sys.work_envelope.min.values[idx]);
|
|
} while(idx);
|
|
}
|
|
|
|
void limits_init (void)
|
|
{
|
|
hal.homing.get_feedrate = get_homing_rate;
|
|
grbl.check_travel_limits = check_travel_limits;
|
|
grbl.check_arc_travel_limits = check_arc_travel_limits;
|
|
grbl.apply_jog_limits = apply_jog_limits;
|
|
grbl.home_machine = homing_cycle;
|
|
}
|