Files
grblHAL/tool_change.c
Terje Io 2c58f0de09 Spindle handling refactoring for improved management and configuration of multiple spindles.
NOTE: this is a relatively large change and may have introduced bugs and/or unintended side-effects. Please report any issues!

Added setting $519 for binding spindle encoder to given spindle in multi spindle configurations.

Added machine readable spindle enumeration report, $SPINDLESH.

Increased default value for setting $398 (number of planner blocs) from 35 to 100 for faster laser engraving.
NOTE: the $398 setting value will not change on an upgrade!
NOTE: STM32F103 builds for the 128K flash variants does not have enough free RAM and will keep 35 as the default value.

Increased allowed number of decimal places from 3 to 5 for $10x stepper step/mm settings. Ref. ioSender issue 346.

Added setting $650 for filing system options. Ref. issue 397.
Currently the following bits are available (depending on the configuration):
0 - Auto mount SD card on startup (1).
1 - Do not add littlefs files when listing the root directory (2).

Added build option for lathe UVW mode.
When enabled UVW words can be used to command relative moves for XYZ without switching to relative mode with G91.
NOTE: This permanently sets lathe mode and disables the $32 mode setting.

There are signature changes to some spindle, ioports enumeration and VFS filing system mount functions.

Added events to allow plugin code to handle tool table data, possibly stored on a SD card.
2023-12-12 09:51:59 +01:00

515 lines
18 KiB
C

/*
tool_change.c - An embedded CNC Controller with rs274/ngc (g-code) support
Manual tool change with option for automatic touch off
Part of grblHAL
Copyright (c) 2020-2023 Terje Io
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "hal.h"
#include "motion_control.h"
#include "protocol.h"
#include "tool_change.h"
// NOTE: only used when settings.homing.flags.force_set_origin is true
#ifndef LINEAR_AXIS_HOME_OFFSET
#define LINEAR_AXIS_HOME_OFFSET -1.0f
#endif
#ifndef TOOL_CHANGE_PROBE_RETRACT_DISTANCE
#define TOOL_CHANGE_PROBE_RETRACT_DISTANCE 2.0f
#endif
static bool block_cycle_start, probe_fixture;
static volatile bool execute_posted = false;
static volatile uint32_t spin_lock = 0;
static float tool_change_position;
static tool_data_t current_tool = {0}, *next_tool = NULL;
static plane_t plane;
static coord_data_t target = {0}, previous;
static driver_reset_ptr driver_reset = NULL;
static enqueue_realtime_command_ptr enqueue_realtime_command = NULL;
static control_signals_callback_ptr control_interrupt_callback = NULL;
// Set tool offset on successful $TPW probe, prompt for retry on failure.
// Called via probe completed event.
static void on_probe_completed (void)
{
if(!sys.flags.probe_succeeded)
grbl.report.feedback_message(Message_ProbeFailedRetry);
else if(sys.tlo_reference_set.mask & bit(plane.axis_linear))
gc_set_tool_offset(ToolLengthOffset_EnableDynamic, plane.axis_linear, sys.probe_position[plane.axis_linear] - sys.tlo_reference[plane.axis_linear]);
// else error?
}
// Restore HAL pointers on completion or reset.
static void change_completed (void)
{
if(enqueue_realtime_command) {
while(spin_lock);
hal.irq_disable();
hal.stream.set_enqueue_rt_handler(enqueue_realtime_command);
enqueue_realtime_command = NULL;
hal.irq_enable();
}
if(control_interrupt_callback) {
while(spin_lock);
hal.irq_disable();
hal.control.interrupt_callback = control_interrupt_callback;
control_interrupt_callback = NULL;
hal.irq_enable();
}
if(probe_fixture)
grbl.on_probe_fixture(&current_tool, true, false);
grbl.on_probe_completed = NULL;
gc_state.tool_change = probe_fixture = false;
}
// Reset claimed HAL entry points and restore previous tool if needed on soft restart.
// Called from EXEC_RESET and EXEC_STOP handlers (via HAL).
static void reset (void)
{
if(next_tool) { //TODO: move to gc_xxx() function?
// Restore previous tool if reset is during change
if(current_tool.tool_id != next_tool->tool_id) {
if(grbl.tool_table.n_tools)
memcpy(gc_state.tool, &current_tool, sizeof(tool_data_t));
else
memcpy(next_tool, &current_tool, sizeof(tool_data_t));
system_add_rt_report(Report_Tool);
}
gc_state.tool_pending = gc_state.tool->tool_id;
next_tool = NULL;
}
change_completed();
driver_reset();
}
// Restore coolant and spindle status, return controlled point to original position.
static bool restore (void)
{
plan_line_data_t plan_data;
plan_data_init(&plan_data);
plan_data.condition.rapid_motion = On;
target.values[plane.axis_linear] = tool_change_position;
mc_line(target.values, &plan_data);
if(!settings.flags.no_restore_position_after_M6) {
memcpy(&target, &previous, sizeof(coord_data_t));
target.values[plane.axis_linear] = tool_change_position;
mc_line(target.values, &plan_data);
}
if(protocol_buffer_synchronize()) {
sync_position();
coolant_sync(gc_state.modal.coolant);
spindle_restore(plan_data.spindle.hal, gc_state.modal.spindle.state, gc_state.spindle.rpm);
if(!settings.flags.no_restore_position_after_M6) {
previous.values[plane.axis_linear] += gc_get_offset(plane.axis_linear);
mc_line(previous.values, &plan_data);
}
}
if(protocol_buffer_synchronize()) {
sync_position();
memcpy(&current_tool, next_tool, sizeof(tool_data_t));
}
return !ABORTED;
}
// Issue warning on cycle start event if touch off by $TPW is pending.
// Used in Manual and Manual_G59_3 modes ($341=1 or $341=2). Called from the foreground process.
static void execute_warning (sys_state_t state)
{
grbl.report.feedback_message(Message_ExecuteTPW);
}
// Execute restore position after touch off (on cycle start event).
// Used in Manual and Manual_G59_3 modes ($341=1 or $341=2). Called from the foreground process.
static void execute_restore (sys_state_t state)
{
// Get current position.
system_convert_array_steps_to_mpos(target.values, sys.position);
bool ok = restore();
change_completed();
grbl.report.feedback_message(Message_None);
if(ok)
system_set_exec_state_flag(EXEC_CYCLE_START);
}
// Execute touch off on cycle start event from @ G59.3 position.
// Used in SemiAutomatic mode ($341=3) only. Called from the foreground process.
static void execute_probe (sys_state_t state)
{
#if COMPATIBILITY_LEVEL <= 1
bool ok;
coord_data_t offset;
plan_line_data_t plan_data;
gc_parser_flags_t flags = {0};
if(probe_fixture)
grbl.on_probe_fixture(next_tool, true, true);
// G59.3 contains offsets to position of TLS.
settings_read_coord_data(CoordinateSystem_G59_3, &offset.values);
plan_data_init(&plan_data);
plan_data.condition.rapid_motion = On;
target.values[plane.axis_0] = offset.values[plane.axis_0];
target.values[plane.axis_1] = offset.values[plane.axis_1];
if((ok = mc_line(target.values, &plan_data))) {
target.values[plane.axis_linear] = offset.values[plane.axis_linear];
ok = mc_line(target.values, &plan_data);
plan_data.feed_rate = settings.tool_change.seek_rate;
plan_data.condition.value = 0;
plan_data.spindle.state.value = 0;
target.values[plane.axis_linear] -= settings.tool_change.probing_distance;
if((ok = ok && mc_probe_cycle(target.values, &plan_data, flags) == GCProbe_Found))
{
system_convert_array_steps_to_mpos(target.values, sys.probe_position);
// Retract a bit and perform slow probe.
plan_data.feed_rate = settings.tool_change.pulloff_rate;
target.values[plane.axis_linear] += TOOL_CHANGE_PROBE_RETRACT_DISTANCE;
if((ok = mc_line(target.values, &plan_data))) {
plan_data.feed_rate = settings.tool_change.feed_rate;
target.values[plane.axis_linear] -= (TOOL_CHANGE_PROBE_RETRACT_DISTANCE + 2.0f);
ok = mc_probe_cycle(target.values, &plan_data, flags) == GCProbe_Found;
}
}
if(ok) {
if(!(sys.tlo_reference_set.mask & bit(plane.axis_linear))) {
sys.tlo_reference[plane.axis_linear] = sys.probe_position[plane.axis_linear];
sys.tlo_reference_set.mask |= bit(plane.axis_linear);
system_add_rt_report(Report_TLOReference);
grbl.report.feedback_message(Message_ReferenceTLOEstablished);
} else
gc_set_tool_offset(ToolLengthOffset_EnableDynamic, plane.axis_linear,
sys.probe_position[plane.axis_linear] - sys.tlo_reference[plane.axis_linear]);
ok = restore();
}
}
change_completed();
if(ok)
system_set_exec_state_flag(EXEC_CYCLE_START);
#endif
}
// Trap cycle start commands and redirect to foreground process
// by adding the function to be called to the realtime execution queue.
ISR_CODE static void ISR_FUNC(trap_control_cycle_start)(control_signals_t signals)
{
spin_lock++;
if(signals.cycle_start) {
if(!execute_posted) {
if(!block_cycle_start)
execute_posted = protocol_enqueue_rt_command(settings.tool_change.mode == ToolChange_SemiAutomatic ? execute_probe : execute_restore);
else
protocol_enqueue_rt_command(execute_warning);
}
signals.cycle_start = Off;
} else
control_interrupt_callback(signals);
spin_lock--;
}
ISR_CODE static bool ISR_FUNC(trap_stream_cycle_start)(char c)
{
bool drop = false;
spin_lock++;
if((drop = (c == CMD_CYCLE_START || c == CMD_CYCLE_START_LEGACY))) {
if(!execute_posted) {
if(!block_cycle_start)
execute_posted = protocol_enqueue_rt_command(settings.tool_change.mode == ToolChange_SemiAutomatic ? execute_probe : execute_restore);
else
protocol_enqueue_rt_command(execute_warning);
}
} else
drop = enqueue_realtime_command(c);
spin_lock--;
return drop;
}
// Trap cycle start command and control signal when tool change is acknowledged by sender.
ISR_CODE static void ISR_FUNC(on_toolchange_ack)(void)
{
control_interrupt_callback = hal.control.interrupt_callback;
hal.control.interrupt_callback = trap_control_cycle_start;
enqueue_realtime_command = hal.stream.set_enqueue_rt_handler(trap_stream_cycle_start);
}
// Set next and/or current tool. Called by gcode.c on on a Tn or M61 command (via HAL).
static void tool_select (tool_data_t *tool, bool next)
{
next_tool = tool;
if(!next)
memcpy(&current_tool, tool, sizeof(tool_data_t));
}
// Start a tool change sequence. Called by gcode.c on a M6 command (via HAL).
static status_code_t tool_change (parser_state_t *parser_state)
{
if(next_tool == NULL)
return Status_GCodeToolError;
if(current_tool.tool_id == next_tool->tool_id)
return Status_OK;
#if COMPATIBILITY_LEVEL > 1
if(settings.tool_change.mode == ToolChange_Manual_G59_3 || settings.tool_change.mode == ToolChange_SemiAutomatic)
return Status_GcodeUnsupportedCommand;
#endif
#if TOOL_LENGTH_OFFSET_AXIS >= 0
plane.axis_linear = TOOL_LENGTH_OFFSET_AXIS;
#if TOOL_LENGTH_OFFSET_AXIS == X_AXIS
plane.axis_0 = Y_AXIS;
plane.axis_1 = Z_AXIS;
#elif TOOL_LENGTH_OFFSET_AXIS == Y_AXIS
plane.axis_0 = Z_AXIS;
plane.axis_1 = X_AXIS;
#else
plane.axis_0 = X_AXIS;
plane.axis_1 = Y_AXIS;
#endif
#else
gc_get_plane_data(&plane, parser_state->modal.plane_select);
#endif
uint8_t homed_req = settings.tool_change.mode == ToolChange_Manual ? bit(plane.axis_linear) : (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT);
if((sys.homed.mask & homed_req) != homed_req)
return Status_HomingRequired;
if(settings.tool_change.mode != ToolChange_SemiAutomatic)
grbl.on_probe_completed = on_probe_completed;
block_cycle_start = settings.tool_change.mode != ToolChange_SemiAutomatic;
// Stop spindle and coolant.
spindle_all_off();
hal.coolant.set_state((coolant_state_t){0});
execute_posted = false;
probe_fixture = grbl.on_probe_fixture != NULL &&
(settings.tool_change.mode == ToolChange_Manual ||
settings.tool_change.mode == ToolChange_Manual_G59_3 ||
settings.tool_change.mode == ToolChange_SemiAutomatic);
// Save current position.
system_convert_array_steps_to_mpos(previous.values, sys.position);
// Establish axis assignments.
previous.values[plane.axis_linear] -= gc_get_offset(plane.axis_linear);
plan_line_data_t plan_data;
plan_data_init(&plan_data);
plan_data.condition.rapid_motion = On;
// TODO: add?
//if(!settings.homing.flags.force_set_origin && bit_istrue(settings.homing.dir_mask.value, bit(plane.axis_linear)))
// tool_change_position = ?
//else
tool_change_position = sys.home_position[plane.axis_linear]; // - settings.homing.flags.force_set_origin ? LINEAR_AXIS_HOME_OFFSET : 0.0f;
// Rapid to home position of linear axis.
memcpy(&target, &previous, sizeof(coord_data_t));
target.values[plane.axis_linear] = tool_change_position;
if(!mc_line(target.values, &plan_data))
return Status_Reset;
#if COMPATIBILITY_LEVEL <= 1
if(settings.tool_change.mode == ToolChange_Manual_G59_3) {
// G59.3 contains offsets to tool change position.
settings_read_coord_data(CoordinateSystem_G59_3, &target.values);
float tmp_pos = target.values[plane.axis_linear];
target.values[plane.axis_linear] = tool_change_position;
if(!mc_line(target.values, &plan_data))
return Status_Reset;
target.values[plane.axis_linear] = tmp_pos;
if(!mc_line(target.values, &plan_data))
return Status_Reset;
}
#endif
protocol_buffer_synchronize();
sync_position();
// Enter tool change mode, waits for cycle start to continue.
parser_state->tool_change = true;
system_set_exec_state_flag(EXEC_TOOL_CHANGE); // Set up program pause for manual tool change
protocol_execute_realtime(); // Execute...
return Status_OK;
}
// Claim HAL tool change entry points and clear current tool offsets.
// TODO: change to survive a warm reset?
void tc_init (void)
{
if(hal.driver_cap.atc) // Do not override driver tool change implementation!
return;
if(!hal.stream.suspend_read) // Tool change requires support for suspending input stream.
return;
if(sys.tlo_reference_set.mask != 0) {
sys.tlo_reference_set.mask = 0;
system_add_rt_report(Report_TLOReference);
}
gc_set_tool_offset(ToolLengthOffset_Cancel, 0, 0.0f);
if(settings.tool_change.mode == ToolChange_Disabled || settings.tool_change.mode == ToolChange_Ignore) {
hal.tool.select = NULL;
hal.tool.change = NULL;
grbl.on_toolchange_ack = NULL;
} else {
hal.tool.select = tool_select;
hal.tool.change = tool_change;
grbl.on_toolchange_ack = on_toolchange_ack;
if(driver_reset == NULL) {
driver_reset = hal.driver_reset;
hal.driver_reset = reset;
}
}
}
void tc_clear_tlo_reference (axes_signals_t homing_cycle)
{
if(settings.tool_change.mode != ToolChange_Disabled) {
plane_t plane;
#if TOOL_LENGTH_OFFSET_AXIS >= 0
plane.axis_linear = TOOL_LENGTH_OFFSET_AXIS;
#else
gc_get_plane_data(&plane, gc_state.modal.plane_select);
#endif
if(homing_cycle.mask & (settings.mode == Mode_Lathe ? (X_AXIS_BIT|Z_AXIS_BIT) : bit(plane.axis_linear))) {
if(sys.tlo_reference_set.mask != 0) {
sys.tlo_reference_set.mask = 0; // Invalidate tool length offset reference
system_add_rt_report(Report_TLOReference);
}
}
}
}
// Perform a probe cycle: set tool length offset and restart job if successful.
// Note: tool length offset is set by the on_probe_completed event handler.
// Called by the $TPW system command.
status_code_t tc_probe_workpiece (void)
{
if(!(settings.tool_change.mode == ToolChange_Manual || settings.tool_change.mode == ToolChange_Manual_G59_3) || enqueue_realtime_command == NULL)
return Status_InvalidStatement;
// TODO: add check for reference offset set?
bool ok;
gc_parser_flags_t flags = {0};
plan_line_data_t plan_data;
#if COMPATIBILITY_LEVEL <= 1
if(probe_fixture)
grbl.on_probe_fixture(next_tool, system_xy_at_fixture(CoordinateSystem_G59_3, TOOLSETTER_RADIUS), true);
#endif
// Get current position.
system_convert_array_steps_to_mpos(target.values, sys.position);
flags.probe_is_no_error = On;
plan_data_init(&plan_data);
plan_data.feed_rate = settings.tool_change.seek_rate;
target.values[plane.axis_linear] -= settings.tool_change.probing_distance;
if((ok = mc_probe_cycle(target.values, &plan_data, flags) == GCProbe_Found))
{
system_convert_array_steps_to_mpos(target.values, sys.probe_position);
// Retract a bit and perform slow probe.
plan_data.feed_rate = settings.tool_change.pulloff_rate;
target.values[plane.axis_linear] += TOOL_CHANGE_PROBE_RETRACT_DISTANCE;
if((ok = mc_line(target.values, &plan_data))) {
plan_data.feed_rate = settings.tool_change.feed_rate;
target.values[plane.axis_linear] -= (TOOL_CHANGE_PROBE_RETRACT_DISTANCE + 2.0f);
if((ok = mc_probe_cycle(target.values, &plan_data, flags) == GCProbe_Found)) {
// Retract a bit again so that any touch plate can be removed
system_convert_array_steps_to_mpos(target.values, sys.probe_position);
plan_data.feed_rate = settings.tool_change.seek_rate;
target.values[plane.axis_linear] += TOOL_CHANGE_PROBE_RETRACT_DISTANCE * 2.0f;
if(target.values[plane.axis_linear] > tool_change_position)
target.values[plane.axis_linear] = tool_change_position;
ok = mc_line(target.values, &plan_data);
}
}
}
if(ok && protocol_buffer_synchronize()) {
sync_position();
block_cycle_start = false;
grbl.report.feedback_message(settings.tool_change.mode == ToolChange_Manual_G59_3
? Message_CycleStart2Continue
: Message_TPCycleStart2Continue);
}
return ok ? Status_OK : Status_GCodeToolError;
}