Files
grblHAL/probe.c
Terje Io adba5d031c Refactored M70-M73 modal state handling, should now be fully compatible with LinuxCNC behaviour.
Added ADC/DAC resolution to $pinstate command, changed reported values to integer for ADC/DAC devices and float formatted for PWM devices.
Numeric settings can now be set via G65P1Q<n>S<value>, <n> is the setting number, <value> is the new value.
Changed alarm code for Modbus exceptions (communication errors) from 14 to 19.
Refactored MPG stream code to allow plugins to hook into MPG streams (via event handler).
Added _free memory system parameter, returns value in KBytes or -1 if not available from driver.
Changed basic stream data type from char to uint8_t, added HAL function and core API for releasing/closing UART streams.
2025-11-08 07:52:01 +01:00

228 lines
7.2 KiB
C

/*
probe.c - An embedded CNC Controller with rs274/ngc (g-code) support
Part of grblHAL
Copyright (c) 2025 Terje Io
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include "hal.h"
typedef struct {
probe_id_t probe_id;
probe_flags_t flags;
probeflags_t inverted_bit;
uint8_t port;
void *input;
get_probe_input_ptr get_input;
} probe_t;
static probe_state_t probe_state = { .connected = On };
static probe_t probes[N_PROBE_MAX], *probe = NULL;
static void probe_irq_handler (uint8_t port, bool state)
{
if(probe_state.is_probing) {
probe_state.triggered = On;
if(!probe_state.was_probing) {
probe_state.was_probing = true;
}
} else {
control_signals_t signals = { .mask = hal.control.get_state().mask };
signals.probe_triggered = On;
hal.control.interrupt_callback(signals);
}
}
// Toggle probe connected status.
static void probe_connected_toggle (void)
{
if(!probe_state.is_probing) {
if((probe->flags.connected = probe_state.connected = !probe_state.connected)) {
if(probe->flags.watchable && settings.probe.enable_protection)
probe->flags.guarded = probe_state.irq_enabled = ioport_enable_irq(probe->port, IRQ_Mode_Change, probe_irq_handler);
} else if(probe->flags.guarded && ioport_enable_irq(probe->port, IRQ_Mode_None, probe_irq_handler))
probe->flags.guarded = probe_state.irq_enabled = Off;
if(settings.probe.enable_protection)
system_add_rt_report(Report_ProbeProtect);
}
}
// Sets up the probe pin invert mask to
// appropriately set the pin logic according to setting for normal-high/normal-low operation
// and the probing cycle modes for toward-workpiece/away-from-workpiece.
static void probe_configure (bool is_probe_away, bool probing)
{
bool invert = !!(settings.probe.value & probe->inverted_bit.value);
probe_state.inverted = is_probe_away ? !invert : invert;
if(probing) {
if(probe->flags.latchable) {
probe_state.is_probing = probe_state.was_probing = Off;
probe_state.triggered = hal.probe.get_state().triggered;
probe_state.irq_mode = probe_state.triggered ? IRQ_Mode_None : (probe_state.inverted ? IRQ_Mode_Falling : IRQ_Mode_Rising);
}
} else
probe_state.irq_mode = probe->flags.connected && probe->flags.watchable && settings.probe.enable_protection ? IRQ_Mode_Change : IRQ_Mode_None;
if(ioport_enable_irq(probe->port, (pin_irq_mode_t)probe_state.irq_mode, probe_irq_handler)) {
probe_state.irq_enabled = probe_state.irq_mode != IRQ_Mode_None;
probe->flags.guarded = !probing && probe_state.irq_enabled;
}
if(settings.probe.enable_protection)
system_add_rt_report(Report_ProbeProtect);
if(!probe_state.irq_enabled)
probe_state.triggered = Off;
probe_state.is_probing = probing;
}
static bool probe_select (probe_id_t probe_id)
{
uint_fast8_t idx = 0;
probe_t *selected_probe = NULL;
do {
if(probes[idx].probe_id == probe_id && probes[idx].get_input)
selected_probe = &probes[idx];
} while(selected_probe == NULL && ++idx < N_PROBE_MAX);
if(!probe_state.is_probing && selected_probe && selected_probe != probe) {
if(probe_state.irq_mode != IRQ_Mode_None)
ioport_enable_irq(probe->port, IRQ_Mode_None, probe_irq_handler);
probe = selected_probe;
hal.probe.configure(false, false);
}
return probe == selected_probe;
}
static probe_flags_t probe_get_caps (probe_id_t probe_id)
{
uint_fast8_t idx = 0;
probe_t *probe = NULL;
do {
if(probes[idx].probe_id == probe_id && probes[idx].get_input)
probe = &probes[idx];
} while(probe == NULL && ++idx < N_PROBE_MAX);
return probe ? probe->flags : (probe_flags_t){0};
}
static bool is_triggered (probe_id_t probe_id)
{
uint_fast8_t idx = 0;
probe_t *probe = NULL;
do {
if(probes[idx].probe_id == probe_id && probes[idx].get_input)
probe = &probes[idx];
} while(probe == NULL && ++idx < N_PROBE_MAX);
return !!probe && probe->get_input(probe->input) ^ !!(settings.probe.value & probe->inverted_bit.value);
}
// Returns the probe connected and triggered pin states.
static probe_state_t get_state (void)
{
probe_state_t state = { .value = probe_state.value };
state.probe_id = probe->probe_id;
state.connected = probe->flags.connected;
if(probe_state.is_probing && probe_state.irq_enabled)
state.triggered = probe_state.triggered;
else
state.triggered = probe->get_input(probe->input) ^ probe_state.inverted;
return state;
}
bool probe_add (probe_id_t probe_id, uint8_t port, pin_irq_mode_t irq_mode, void *input, get_probe_input_ptr get_input)
{
static uint_fast8_t n_probes = 0;
if(get_input == NULL || n_probes >= N_PROBE_MAX)
return false;
bool can_latch;
if(!(can_latch = (irq_mode & IRQ_Mode_RisingFalling) == IRQ_Mode_RisingFalling))
hal.signals_cap.probe_triggered = Off;
else if(n_probes == 0)
hal.signals_cap.probe_triggered = On;
probes[n_probes].probe_id = probe_id;
probes[n_probes].port = port;
probes[n_probes].flags.available = On;
probes[n_probes].flags.connected = probe_state.connected;
probes[n_probes].flags.latchable = can_latch;
probes[n_probes].flags.watchable = !!(irq_mode & IRQ_Mode_Change);
probes[n_probes].input = input;
probes[n_probes].get_input = get_input;
switch(probe_id) {
case Probe_Toolsetter:
probes[n_probes].inverted_bit.invert_toolsetter_input = On;
break;
case Probe_2:
probes[n_probes].inverted_bit.invert_probe2_input = On;
break;
default: // Probe_Default
probes[n_probes].inverted_bit.invert_probe_pin = On;
break;
}
hal.driver_cap.probe_pull_up = On;
hal.probe.configure = probe_configure;
hal.probe.connected_toggle = probe_connected_toggle;
hal.probe.get_caps = probe_get_caps;
hal.probe.get_state = get_state;
hal.probe.is_triggered = is_triggered;
if(probe == NULL || probe_id == Probe_Default)
probe = &probes[n_probes];
if(++n_probes == 2)
hal.probe.select = probe_select;
return true;
}
void probe_connected_event (void *data)
{
if(hal.probe.connected_toggle) {
if((uintptr_t)data == 2)
hal.probe.connected_toggle();
else {
probe_state_t state = hal.probe.get_state();
if(state.probe_id == Probe_Default && hal.driver_cap.probe && state.connected != !!data)
hal.probe.connected_toggle();
}
}
}