Files
grblHAL/nuts_bolts.c
Terje Io 64c35930c7 Refactored offset handling, for improved readability and in preparation for rotation support.
Added experimental support for G66 (modal macro call) and G67 (end modal macro call).
Made axis letter to axis/motor assignment for axes ABCUVW freely changeable at compile time.
Fix for some G65 arguments being incorrectly validated for normal use (sign, range).
Added repeat support to G65 macro call via the optional L parameter word.
Changed default setting for ABC-axes to rotary.
Changed defaults for jerk settings to 10x acceleration settings.
Disabled jerk for jog, probe and spindle synchronized motion.
Added _active_probe system parameter, returns -1 if no probe inputs available.
Minor bug fix, G5.1 and G33.1 motion commands were not coverted to the correct string equivalent in $G output.
2026-01-25 07:51:44 +01:00

468 lines
12 KiB
C

/*
nuts_bolts.c - Shared functions
Part of grblHAL
Copyright (c) 2017-2024 Terje Io
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <ctype.h>
#include "hal.h"
#include "protocol.h"
#include "state_machine.h"
#include "nuts_bolts.h"
#ifndef DWELL_TIME_STEP
#define DWELL_TIME_STEP 50 // Integer (1-255) (milliseconds)
#endif
#define MAX_PRECISION 10
static char buf[STRLEN_COORDVALUE + 1];
static const float froundvalues[MAX_PRECISION + 1] =
{
0.5f, // 0
0.05f, // 1
0.005f, // 2
0.0005f, // 3
0.00005f, // 4
0.000005f, // 5
0.0000005f, // 6
0.00000005f, // 7
0.000000005f, // 8
0.0000000005f, // 9
0.00000000005f // 10
};
#if N_AXIS > 6 && defined(AXIS_REMAP_ABC2UVW)
#error "Illegal remapping of ABC axes!"
#endif
const coord_data_t null_vector = {0};
static const char axis_letters[] = {
AXIS0_LETTER, '\0',
AXIS1_LETTER, '\0',
AXIS2_LETTER, '\0',
#if N_AXIS > 3
AXIS3_LETTER, '\0',
#endif
#if N_AXIS > 4
AXIS4_LETTER, '\0',
#endif
#if N_AXIS > 5
AXIS5_LETTER, '\0',
#endif
#if N_AXIS > 6
AXIS6_LETTER, '\0',
#endif
#if N_AXIS > 7
AXIS7_LETTER, '\0',
#endif
};
char const *const axis_letter[N_AXIS] = {
&axis_letters[0 << 1],
&axis_letters[1 << 1],
&axis_letters[2 << 1],
#if N_AXIS > 3
&axis_letters[3 << 1],
#endif
#if N_AXIS > 4
&axis_letters[4 << 1],
#endif
#if N_AXIS > 5
&axis_letters[5 << 1],
#endif
#if N_AXIS > 6
&axis_letters[6 << 1],
#endif
#if N_AXIS > 7
&axis_letters[7 << 1],
#endif
};
// Converts an uint32 variable to string.
char *uitoa (uint32_t n)
{
char *bptr = buf + sizeof(buf);
*--bptr = '\0';
if (n == 0)
*--bptr = '0';
else while (n) {
*--bptr = '0' + (n % 10);
n /= 10;
}
return bptr;
}
// Convert float to string by immediately converting to integers.
// Number of decimal places, which are tracked by a counter, must be set by the user.
// The integers is then efficiently converted to a string.
char *ftoa (float n, uint8_t decimal_places)
{
bool isNegative;
char *bptr = buf + sizeof(buf);
*--bptr = '\0';
if ((isNegative = n < 0.0f))
n = -n;
n += froundvalues[decimal_places];
uint32_t a = (uint32_t)n;
if (decimal_places) {
n -= (float)a;
uint_fast8_t decimals = decimal_places;
while (decimals >= 2) { // Quickly convert values expected to be E0 to E-4.
n *= 100.0f;
decimals -= 2;
}
if (decimals)
n *= 10.0f;
uint32_t b = (uint32_t)n;
while(decimal_places--) {
if(b) {
*--bptr = (b % 10) + '0'; // Get digit
b /= 10;
} else
*--bptr = '0';
}
}
*--bptr = '.'; // Always add decimal point (TODO: is this really needed?)
if(a == 0)
*--bptr = '0';
else while(a) {
*--bptr = (a % 10) + '0'; // Get digit
a /= 10;
}
if(isNegative)
*--bptr = '-';
return bptr;
}
// Trim trailing zeros and possibly decimal point
char *trim_float (char *s)
{
if(strchr(s, '.')) {
char *s2 = strchr(s, '\0') - 1;
while(*s2 == '0')
*s2-- = '\0';
if(*s2 == '.')
*s2 = '\0';
}
return s;
}
// Extracts an unsigned integer value from a string.
status_code_t read_uint (const char *line, uint_fast8_t *char_counter, uint32_t *uint_ptr)
{
const char *ptr = line + *char_counter;
int_fast8_t exp = 0;
uint_fast8_t ndigit = 0, c;
uint32_t intval = 0;
bool isdecimal = false, ok = false;
// Grab first character and increment pointer. No spaces assumed in line.
c = *ptr++;
if (c == '-')
return Status_NegativeValue;
// Skip initial sign character
if (c == '+')
c = *ptr++;
// Extract number into fast integer. Track decimal in terms of exponent value.
while(c) {
c -= '0';
if (c <= 9) {
ok = true;
if(!isdecimal && (c != 0 || intval))
ndigit++;
if (isdecimal && c != 0)
return Status_GcodeCommandValueNotInteger;
if ((ndigit <= 9 || c <= 4) && intval <= 429496729) {
intval = (((intval << 2) + intval) << 1) + c; // intval * 10 + c
} else if (!isdecimal)
exp++; // Drop overflow digits
} else if (c == (uint_fast8_t)('.' - '0') && !isdecimal)
isdecimal = true;
else
break;
c = *ptr++;
}
// Return if no digits have been read.
if (!ok)
return Status_BadNumberFormat;
*uint_ptr = intval; // Assign value.
*char_counter = ptr - line - 1; // Set char_counter to next statement
return Status_OK;
}
// Extracts a floating point value from a string. The following code is based loosely on
// the avr-libc strtod() function by Michael Stumpf and Dmitry Xmelkov and many freely
// available conversion method examples, but has been highly optimized for Grbl. For known
// CNC applications, the typical decimal value is expected to be in the range of E0 to E-4.
// Scientific notation is officially not supported by g-code, and the 'E' character may
// be a g-code word on some CNC systems. So, 'E' notation will not be recognized.
// NOTE: Thanks to Radu-Eosif Mihailescu for identifying the issues with using strtod().
bool read_float (const char *line, uint_fast8_t *char_counter, float *float_ptr)
{
const char *ptr = line + *char_counter;
int_fast8_t exp = 0;
uint_fast8_t ndigit = 0, c;
uint32_t intval = 0;
bool isnegative, isdecimal = false, ok = false;
// Grab first character and increment pointer. No spaces assumed in line.
c = *ptr++;
// Capture initial sign character
if ((isnegative = (c == '-')) || c == '+')
c = *ptr++;
// Extract number into fast integer. Track decimal in terms of exponent value.
while(c) {
c -= '0';
if (c <= 9) {
ok = true;
if(c != 0 || intval)
ndigit++;
if (ndigit <= MAX_INT_DIGITS) {
if (isdecimal)
exp--;
intval = (((intval << 2) + intval) << 1) + c; // intval * 10 + c
} else if (!isdecimal)
exp++; // Drop overflow digits
} else if (c == (uint_fast8_t)('.' - '0') && !isdecimal)
isdecimal = true;
else
break;
c = *ptr++;
}
// Return if no digits have been read.
if (!ok)
return false;
// Convert integer into floating point.
float fval = (float)intval;
// Apply decimal. Should perform no more than two floating point multiplications for the
// expected range of E0 to E-4.
if (fval != 0.0f) {
while (exp <= -2) {
fval *= 0.01f;
exp += 2;
}
if (exp < 0)
fval *= 0.1f;
else if (exp > 0) do {
fval *= 10.0f;
} while (--exp > 0);
}
// Assign floating point value with correct sign.
*float_ptr = isnegative ? - fval : fval;
*char_counter = ptr - line - 1; // Set char_counter to next statement
return true;
}
// Returns true if float value is a whole number (integer)
bool isintf (float value)
{
return !isnan(value) && fabsf(value - truncf(value)) < 0.001f;
}
// Non-blocking delay function used for general operation and suspend features.
bool delay_sec (float seconds, delaymode_t mode)
{
bool ok = true;
uint_fast16_t i = (uint_fast16_t)ceilf((1000.0f / DWELL_TIME_STEP) * seconds) + 1;
while(--i && ok) {
if(mode == DelayMode_Dwell)
ok = protocol_execute_realtime();
else // DelayMode_SysSuspend, execute rt_system() only to avoid nesting suspend loops.
ok = protocol_exec_rt_system() && !state_door_reopened(); // Bail, if safety door reopens.
if(ok)
hal.delay_ms(DWELL_TIME_STEP, NULL); // Delay DWELL_TIME_STEP increment
}
return ok;
}
float convert_delta_vector_to_unit_vector (float *vector)
{
uint_fast8_t idx = N_AXIS;
float magnitude = 0.0f, inv_magnitude;
do {
if (vector[--idx] != 0.0f)
magnitude += vector[idx] * vector[idx];
} while(idx);
idx = N_AXIS;
magnitude = sqrtf(magnitude);
inv_magnitude = 1.0f / magnitude;
do {
vector[--idx] *= inv_magnitude;
} while(idx);
return magnitude;
}
void rotate (coord_data_t *pt, plane_t plane, float angle /*rad*/)
{
float cos = cosf(angle), sin = sinf(angle),
t0 = pt->values[plane.axis_0] * cos - pt->values[plane.axis_1] * sin,
t1 = pt->values[plane.axis_0] * sin + pt->values[plane.axis_1] * cos;
pt->values[plane.axis_0] = t0;
pt->values[plane.axis_1] = t1;
}
// parse ISO8601 datetime: YYYY-MM-DDTHH:MM:SSZxxx
struct tm *get_datetime (const char *s)
{
static struct tm dt;
PROGMEM static const uint8_t mdays[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
char *s1 = (char *)s, c;
uint_fast16_t idx = 0, value = 0;
memset(&dt, 0, sizeof(struct tm));
dt.tm_year = dt.tm_mon = dt.tm_mday = dt.tm_hour = dt.tm_min = dt.tm_sec = -1;
do {
c = *s1++;
if(isdigit(c))
value = (value * 10) + c - '0';
else if(!(c == '-' || c == ':' || c == 'T' || c == 'Z' || c == '\0'))
break;
else {
switch(idx) {
case 0:
if(c == '-' && value >= 1970 && value <= 2099)
dt.tm_year = value - 1900;
break;
case 1:
if(c == '-' && value >= 1 && value <= 12)
dt.tm_mon = value - 1;
break;
case 2:
if(c == 'T' && value >= 1 && value <= (mdays[dt.tm_mon >= 0 ? dt.tm_mon : 0] + (dt.tm_mon == 1 && dt.tm_year != 100 && (dt.tm_year % 4) == 0 ? 1 : 0)))
dt.tm_mday = value;
break;
case 3:
if(c == ':' && value <= 23)
dt.tm_hour = value;
break;
case 4:
if(c == ':' && value <= 59)
dt.tm_min = value;
break;
case 5:
if((c == 'Z' || c == '\0') && value <= 59)
dt.tm_sec = value;
break;
}
idx++;
value = 0;
}
} while(c);
return (dt.tm_year | dt.tm_mon | dt.tm_mday | dt.tm_hour | dt.tm_min | dt.tm_sec) > 0 ? &dt : NULL;
}
// Remove spaces from and convert string to uppercase (in situ)
char *strcaps (char *s)
{
char c, *s1 = s, *s2 = s;
do {
c = *s1++;
if(c != ' ')
*s2++ = CAPS(c);
} while(c);
if(s1 != s2)
*s2 = '\0';
return s;
}
uint_fast8_t bit_count (uint32_t bits)
{
uint_fast8_t count = 0;
while(bits) {
bits &= (bits - 1);
count++;
}
return count;
}
void dummy_handler (void)
{
// NOOP
}