Files
g2/g2core/cycle_probing.cpp
2017-02-01 13:14:01 -05:00

364 lines
16 KiB
C++

/*
* cycle_probing.c - probing cycle extension to canonical_machine.c
* This file is part of the g2core project
*
* Copyright (c) 2010 - 2017 Alden S Hart, Jr., Sarah Tappon, Tom Cauchois, Robert Giseburt
* With contributions from Other Machine Company.
*
* This file ("the software") is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2 as published by the
* Free Software Foundation. You should have received a copy of the GNU General Public
* License, version 2 along with the software. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, you may use this file as part of a software library without
* restriction. Specifically, if other files instantiate templates or use macros or
* inline functions from this file, or you compile this file and link it with other
* files to produce an executable, this file does not by itself cause the resulting
* executable to be covered by the GNU General Public License. This exception does not
* however invalidate any other reasons why the executable file might be covered by the
* GNU General Public License.
*
* THE SOFTWARE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT WITHOUT ANY
* WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
* SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "g2core.h"
#include "config.h"
#include "json_parser.h"
#include "text_parser.h"
#include "canonical_machine.h"
#include "kinematics.h"
#include "encoder.h"
#include "spindle.h"
#include "report.h"
#include "gpio.h"
#include "planner.h"
#include "util.h"
#include "xio.h"
/**** Probe singleton structure ****/
#define MINIMUM_PROBE_TRAVEL 0.254 // mm of travel below which the probe will err out
struct pbProbingSingleton { // persistent probing runtime variables
// probe target
float target[AXES];
bool flags[AXES];
// controls for probing cycle
int8_t probe_input; // digital input to read
bool trip_sense; // true if contact CLOSURE trips probe (true for G38.2 and G38.3)
bool alarm_flag; // true if failure triggers alarm (true for G38.2 and G38.4)
bool wait_for_motion_end; // flag to know when the motion has ended
stat_t (*func)(); // binding for callback function state machine
// saved gcode model state
cmUnitsMode saved_units_mode; // G20,G21 setting
cmDistanceMode saved_distance_mode; // G90,G91 global setting
bool saved_soft_limit_enable; // turn off soft limits during probing
float saved_jerk[AXES]; // saved and restored for each axis
};
static struct pbProbingSingleton pb;
/**** NOTE: global prototypes and other .h info is located in canonical_machine.h ****/
static stat_t _probing_start();
static stat_t _probing_backoff();
static stat_t _probing_finish();
static stat_t _probing_exception_exit(stat_t status);
static stat_t _probe_axis_move(const float target[], const bool flags[]);
// helper
static void _motion_end_callback(float* vect, bool* flag)
{
pb.wait_for_motion_end = false;
}
/***********************************************************************************
**** G38.x Probing Cycle ***********************************************************
***********************************************************************************/
/****************************************************************************************
* cm_probing_cycle_start() - G38.x probing cycle using contact (digital input)
* cm_probing_cycle_callback() - main loop callback for running the probing cycle
*
* All cm_probe_cycle_start does is prevent any new commands from queueing to the
* planner so that the planner can move to a stop and report MACHINE_PROGRAM_STOP.
* OK, it also queues the function that's called once motion has stopped.
*
* Note: When coding a cycle (like this one) you get to perform one queued
* move per entry into the continuation, then you must exit. We put two buffer
* items into the queue: We queue a move, then we queue a "command" that simply
* sets a flag in the probing object (pb.waiting_for_motion_end) to tell us that
* the move has finished. The runtime has a special exception for probing and
* homing where if a move is interrupted it clears it out of the queue.
*
* --- Some further details ---
* Starting from the definition of G38.x from the LinuxCNC docs:
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G38-probe
*
* Once we are past the starting conditions for the probe to succeed as listed
* in the LinuxCNC documentation, we will then execute the move. After the move
* we interpret "success" as the probe value changing in the correct direction,
* and "failure" as it not changing. IOW, the move can finish and the probe input
* not change, which we consider to be a failure.
*
* Taking polarity of the probe input into account to give a value of Active or
* Inactive, for G38.2 and G38.3, success requires going from Inactive to Active,
* and for G38.4 and G38.5 success requires an edge from Inactive to Active.
*
* For G38.2 and G38.4 we also put the machine into an ALARM state if the probing
* "fails".
*
* When the probe input fires, the input interrupt takes a snapshot of the internal
* encoders, then requests a "high speed" feedhold. We then run forward kinematics
* on the encoder snapshot to get the reported position. We also execute a move
* from the final position (after the feedhold) back to the point we report.
*
* Additionally, we record the last PROBES_STORED (at least 3) probe points that
* succeeded. The current or most recent probe (be it success, failure, or
* in-progress) occupies one of those positions, which is the one reported by the
* "prb" JSON.
*
* Internally we store the active/most recent probe in cm.probe_results[0] and
* cm.probe_state[0]. Before we start a new probe, if cm.probe_state[0] ==
* PROBE_SUCCEEDED, then we roll 0 to 1, and 1 to 2, up to PROBES_STORED-1.
* The oldest probe is "lost."
*
* Note: Spindle and coolant are not affected during probing. Some probes require
* the spindle to be turned on.
*/
uint8_t cm_straight_probe(float target[], bool flags[], bool trip_sense, bool alarm_flag)
{
// error if zero feed rate
if (fp_ZERO(cm.gm.feed_rate)) {
if (alarm_flag) {
cm_alarm(STAT_GCODE_FEEDRATE_NOT_SPECIFIED, "Feedrate is zero");
}
return (STAT_GCODE_FEEDRATE_NOT_SPECIFIED);
}
// error if no axes specified
if (!(flags[AXIS_X] | flags[AXIS_Y] | flags[AXIS_Z] |
flags[AXIS_A] | flags[AXIS_B] | flags[AXIS_C])) {
if (alarm_flag) {
cm_alarm(STAT_GCODE_AXIS_IS_MISSING, "Axis is missing");
}
return (STAT_GCODE_AXIS_IS_MISSING);
}
// initialize the probe input; error if no probe input specified
if ((pb.probe_input = gpio_get_probing_input()) == -1) {
if (alarm_flag) {
cm_alarm(STAT_NO_PROBE_INPUT_CONFIGURED, "No probe input");
}
return (STAT_NO_PROBE_INPUT_CONFIGURED);
}
// setup
pb.alarm_flag = alarm_flag;
pb.trip_sense = trip_sense;
pb.func = _probing_start; // bind probing start function
cm_set_model_target(target, flags); // convert target to canonical form taking all offsets into account
copy_vector(pb.target, cm.gm.target); // cm_set_model_target() sets target in gm, move it to pb
copy_vector(pb.flags, flags); // set axes involved in the move
// if the previous probe succeeded, roll probes to the next position
if (cm.probe_state[0] == PROBE_SUCCEEDED) {
for (uint8_t n = PROBES_STORED - 1; n > 0; n--) {
cm.probe_state[n] = cm.probe_state[n - 1];
for (uint8_t axis = 0; axis < AXES; axis++) {
cm.probe_results[n][axis] = cm.probe_results[n - 1][axis];
}
}
}
// clear the old probe results
clear_vector(cm.probe_results[0]); // NOTE: relying on cm.probe_results will not detect a probe to 0,0,0.
// queue a function to let us know when we can start probing
cm.probe_state[0] = PROBE_WAITING; // wait until planner queue empties before starting movement
pb.wait_for_motion_end = true;
mp_queue_command(_motion_end_callback, nullptr, nullptr); // note: these args are ignored
return (STAT_OK);
}
/*
* cm_probing_cycle_callback() - handle probing progress
*
* This is called regularly from the controller. If we report NOOP, the controller
* will continue with other tasks. Otherwise the controller will not execute any
* later tasks, including read any more "data".
*
* Note: When coding a cycle (like this one) you must wait until the last move has
* actually been queued (or has finished) before declaring the cycle to be done.
* Otherwise there is a nasty race condition in _controller_HSM() that may accept
* the next command before the position of the final move has been recorded in the
* Gcode model. That's what the wait_for_motion_end callback is about.
*/
uint8_t cm_probing_cycle_callback(void)
{
if ((cm.cycle_state != CYCLE_PROBE) && (cm.probe_state[0] != PROBE_WAITING)) { // exit if not in a probing cycle
return (STAT_NOOP);
}
if (pb.wait_for_motion_end) { // sync to planner move ends (using callback)
return (STAT_EAGAIN);
}
return (pb.func()); // execute the current probing move
}
/*
* _probing_start() - start the probe or skip it if contact is already active
*/
static uint8_t _probing_start()
{
// Initializations. These initializations are required before starting the probing cycle
// but must be done after the planner has exhausted all current CYCLE moves as
// they affect the runtime (specifically the digital input modes). Side effects would
// include limit switches initiating probe actions instead of just killing movement
// so optimistic... ;)
// NOTE: it is *not* an error condition for the probe not to trigger.
// it is an error for the limit or homing switches to fire, or for some other configuration error.
cm.probe_state[0] = PROBE_FAILED;
cm.machine_state = MACHINE_CYCLE;
cm.cycle_state = CYCLE_PROBE;
// save relevant non-axis parameters from Gcode model
pb.saved_distance_mode = (cmDistanceMode)cm_get_distance_mode(ACTIVE_MODEL);
pb.saved_units_mode = (cmUnitsMode)cm_get_units_mode(ACTIVE_MODEL);
pb.saved_soft_limit_enable = cm.soft_limit_enable;
// set working values
cm_set_distance_mode(ABSOLUTE_DISTANCE_MODE);
cm_set_units_mode(MILLIMETERS);
// initialize the axes - save the jerk settings & change to the high-speed jerk settings
for (uint8_t axis = 0; axis < AXES; axis++) {
pb.saved_jerk[axis] = cm_get_axis_jerk(axis); // save the max jerk value
cm_set_axis_jerk(axis, cm.a[axis].jerk_high); // use the high-speed jerk for probe
}
// error if the probe target is too close to the current position
if (get_axis_vector_length(cm.gmx.position, pb.target) < MINIMUM_PROBE_TRAVEL) {
return(_probing_exception_exit(STAT_PROBE_TRAVEL_TOO_SMALL));
}
gpio_set_probing_mode(pb.probe_input, true);
// Get initial probe state, don't probe if we're already contacted.
// Input == false is the correct start condition for G38.2 and G38.3
// Input == true is the right start condition for G38.4 and G38.5
// If the initial input is the same as the target state it's an error
// pb.input_state = gpio_read_input(pb.probe_input);
// if (pb.trip_sense == pb.input_state) { // == is exclusive nor for booleans
if (pb.trip_sense == gpio_read_input(pb.probe_input)) { // == is exclusive nor for booleans
return(_probing_exception_exit(STAT_PROBE_IS_ALREADY_TRIPPED));
}
// Everything checks out. Run the probe move
_probe_axis_move(pb.target, pb.flags);
pb.func = _probing_backoff;
return (STAT_EAGAIN);
}
/*
* _probing_backoff() - runs after the probe move, whether it contacted or not
*
* Back off to the measured touch position captured by encoder snapshot
*/
static stat_t _probing_backoff()
{
// Test if we've contacted. If so, do the backoff. Convert the contact position
// captured from the encoder in step space to steps to mm. The encoder snapshot
// was taken by input interrupt at the time of closure.
if (pb.trip_sense == gpio_read_input(pb.probe_input)) { // exclusive or for booleans
cm.probe_state[0] = PROBE_SUCCEEDED;
float contact_position[AXES];
kn_forward_kinematics(en_get_encoder_snapshot_vector(), contact_position);
_probe_axis_move(contact_position, pb.flags); // NB: feed rate is the same as the probe move
} else {
cm.probe_state[0] = PROBE_FAILED;
}
pb.func = _probing_finish;
return (STAT_EAGAIN);
}
/*
* _probe_axis_move() - function to execute probing moves
*
* target[] must be provided in canonical coordinates (absolute, mm)
*/
static stat_t _probe_axis_move(const float target[], const bool flags[])
{
// target[] is in absolute coordinates. cm_set_absolute_override() also zeros work offsets,
// which are restored later via cm_set_absolute_override(MODEL, ABSOLUTE_OVERRIDE_OFF)
cm_set_absolute_override(MODEL, ABSOLUTE_OVERRIDE_ON);
pb.wait_for_motion_end = true; // set this BEFORE the motion starts
cm_straight_feed(target, flags);
mp_queue_command(_motion_end_callback, nullptr, nullptr); // the last two arguments are ignored anyway
return (STAT_EAGAIN);
}
/*
* _probe_restore_settings() - helper for both exits
* _probing_exception_exit() - exit for probes that hit an exception
* _probing_finish() - exit for successful and non-contacted (failed) probes
*/
static void _probe_restore_settings()
{
gpio_set_probing_mode(pb.probe_input, false); // set input back to normal operation
for (uint8_t axis = 0; axis < AXES; axis++) { // restore axis jerks
cm.a[axis].jerk_max = pb.saved_jerk[axis];
}
cm_set_absolute_override(MODEL, ABSOLUTE_OVERRIDE_OFF); // release abs override and restore work offsets
cm_set_distance_mode(pb.saved_distance_mode);
cm_set_units_mode(pb.saved_units_mode);
cm.soft_limit_enable = pb.saved_soft_limit_enable;
cm_set_motion_mode(MODEL, MOTION_MODE_CANCEL_MOTION_MODE); // cancel feed modes used during probing
sr_request_status_report(SR_REQUEST_IMMEDIATE); // request SR for success or failure
cm_canned_cycle_end();
}
static stat_t _probing_finish()
{
_probe_restore_settings(); // cleanup first
// set absolute position in probe results vector
for (uint8_t axis = 0; axis < AXES; axis++) {
cm.probe_results[0][axis] = cm_get_absolute_position(ACTIVE_MODEL, axis);
}
if (cm.probe_state[0] == PROBE_SUCCEEDED) {
return (STAT_OK);
}
// handle failure cases
if (pb.alarm_flag) {
cm_alarm(STAT_PROBE_CYCLE_FAILED, "probing error");
}
return (STAT_OK);
}
static stat_t _probing_exception_exit(stat_t status)
{
_probe_restore_settings(); // cleanup first
if (pb.alarm_flag) { // generate an alarm
cm_alarm(status, "probe error");
}
return (status);
}