mirror of
https://gitlab.com/etherlab.org/ethercat.git
synced 2026-02-06 20:01:44 +08:00
1446 lines
50 KiB
C
1446 lines
50 KiB
C
/******************************************************************************
|
|
*
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2006-2008 Florian Pose, Ingenieurgemeinschaft IgH
|
|
*
|
|
* This file is part of the IgH EtherCAT master userspace library.
|
|
*
|
|
* The IgH EtherCAT master userspace library is free software; you can
|
|
* redistribute it and/or modify it under the terms of the GNU Lesser General
|
|
* Public License as published by the Free Software Foundation; version 2.1
|
|
* of the License.
|
|
*
|
|
* The IgH EtherCAT master userspace library is distributed in the hope that
|
|
* it will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with the IgH EtherCAT master userspace library. If not, see
|
|
* <http://www.gnu.org/licenses/>.
|
|
*
|
|
* ---
|
|
*
|
|
* The license mentioned above concerns the source code only. Using the
|
|
* EtherCAT technology and brand is only permitted in compliance with the
|
|
* industrial property and similar rights of Beckhoff Automation GmbH.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/** \file
|
|
*
|
|
* EtherCAT master application interface.
|
|
*
|
|
* \defgroup ApplicationInterface EtherCAT Application Interface
|
|
*
|
|
* EtherCAT interface for realtime applications. This interface is designed
|
|
* for realtime modules that want to use EtherCAT. There are functions to
|
|
* request a master, to map process data, to communicate with slaves via CoE
|
|
* and to configure and activate the bus.
|
|
*
|
|
* Changes in version 1.5:
|
|
*
|
|
* - Added the distributed clocks feature and the respective method
|
|
* ecrt_slave_config_dc() to configure a slave for cyclic
|
|
* operation, and ecrt_master_application_time(),
|
|
* ecrt_master_sync_reference_clock() and ecrt_master_sync_slave_clocks()
|
|
* for offset and drift compensation. The EC_TIMEVAL2NANO() macro can be
|
|
* used for epoch time conversion.
|
|
* - Changed the meaning of the negative return values of
|
|
* ecrt_slave_config_reg_pdo_entry() and ecrt_slave_config_sdo*().
|
|
* - Imlemented the Vendor-specific over EtherCAT mailbox protocol. See
|
|
* ecrt_slave_config_create_voe_handler().
|
|
* - Renamed ec_sdo_request_state_t to ec_request_state_t, because it is also
|
|
* used by VoE handlers.
|
|
* - Added ecrt_master_slave() to get information about a certain slave.
|
|
* - Added ecrt_slave_sdo_upload() and ecrt_slave_sdo_download() methods to
|
|
* let an application transfer SDOs before activating the master.
|
|
* - Removed 'const' from argument of ecrt_sdo_request_state(), because the
|
|
* userspace library has to modify object internals.
|
|
* - Added 64-bit data access macros.
|
|
*
|
|
* @{
|
|
*/
|
|
|
|
/*****************************************************************************/
|
|
|
|
#ifndef __ECRT_H__
|
|
#define __ECRT_H__
|
|
|
|
#ifdef __KERNEL__
|
|
#include <asm/byteorder.h>
|
|
#include <linux/types.h>
|
|
#include <linux/time.h>
|
|
#else
|
|
#include <stdlib.h> // for size_t
|
|
#include <stdint.h>
|
|
#include <sys/time.h> // for struct timeval
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
* Global definitions
|
|
*****************************************************************************/
|
|
|
|
/** EtherCAT realtime interface major version number.
|
|
*/
|
|
#define ECRT_VER_MAJOR 1
|
|
|
|
/** EtherCAT realtime interface minor version number.
|
|
*/
|
|
#define ECRT_VER_MINOR 5
|
|
|
|
/** EtherCAT realtime interface version word generator.
|
|
*/
|
|
#define ECRT_VERSION(a, b) (((a) << 8) + (b))
|
|
|
|
/** EtherCAT realtime interface version word.
|
|
*/
|
|
#define ECRT_VERSION_MAGIC ECRT_VERSION(ECRT_VER_MAJOR, ECRT_VER_MINOR)
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** End of list marker.
|
|
*
|
|
* This can be used with ecrt_slave_config_pdos().
|
|
*/
|
|
#define EC_END ~0U
|
|
|
|
/** Maximum number of sync managers per slave.
|
|
*/
|
|
#define EC_MAX_SYNC_MANAGERS 16
|
|
|
|
/** Maximum string length.
|
|
*
|
|
* Used in ec_slave_info_t.
|
|
*/
|
|
#define EC_MAX_STRING_LENGTH 64
|
|
|
|
/** Timeval to nanoseconds conversion.
|
|
*
|
|
* This macro converts a unix epoch time to EtherCAT DC time.
|
|
*
|
|
* \see void ecrt_master_application_time()
|
|
*
|
|
* \param TV struct timeval containing epoch time.
|
|
*/
|
|
#define EC_TIMEVAL2NANO(TV) \
|
|
(((TV).tv_sec - 946684800ULL) * 1000000000ULL + (TV).tv_usec * 1000ULL)
|
|
|
|
/******************************************************************************
|
|
* Data types
|
|
*****************************************************************************/
|
|
|
|
struct ec_master;
|
|
typedef struct ec_master ec_master_t; /**< \see ec_master */
|
|
|
|
struct ec_slave_config;
|
|
typedef struct ec_slave_config ec_slave_config_t; /**< \see ec_slave_config */
|
|
|
|
struct ec_domain;
|
|
typedef struct ec_domain ec_domain_t; /**< \see ec_domain */
|
|
|
|
struct ec_sdo_request;
|
|
typedef struct ec_sdo_request ec_sdo_request_t; /**< \see ec_sdo_request. */
|
|
|
|
struct ec_voe_handler;
|
|
typedef struct ec_voe_handler ec_voe_handler_t; /**< \see ec_voe_handler. */
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Master state.
|
|
*
|
|
* This is used for the output parameter of ecrt_master_state().
|
|
*
|
|
* \see ecrt_master_state().
|
|
*/
|
|
typedef struct {
|
|
unsigned int slaves_responding; /**< Number of slaves in the bus. */
|
|
unsigned int al_states : 4; /**< Application-layer states of all slaves.
|
|
The states are coded in the lower 4 bits.
|
|
If a bit is set, it means that at least one
|
|
slave in the bus is in the corresponding
|
|
state:
|
|
- Bit 0: \a INIT
|
|
- Bit 1: \a PREOP
|
|
- Bit 2: \a SAFEOP
|
|
- Bit 3: \a OP */
|
|
unsigned int link_up : 1; /**< \a true, if the network link is up. */
|
|
} ec_master_state_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Slave configuration state.
|
|
*
|
|
* This is used as an output parameter of ecrt_slave_config_state().
|
|
*
|
|
* \see ecrt_slave_config_state().
|
|
*/
|
|
typedef struct {
|
|
unsigned int online : 1; /**< The slave is online. */
|
|
unsigned int operational : 1; /**< The slave was brought into \a OP state
|
|
using the specified configuration. */
|
|
unsigned int al_state : 4; /**< The application-layer state of the slave.
|
|
- 1: \a INIT
|
|
- 2: \a PREOP
|
|
- 4: \a SAFEOP
|
|
- 8: \a OP
|
|
|
|
Note that each state is coded in a different
|
|
bit! */
|
|
} ec_slave_config_state_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Slave information.
|
|
*
|
|
* This is used as an output parameter of ecrt_master_slave().
|
|
*
|
|
* \see ecrt_master_slave().
|
|
*/
|
|
typedef struct {
|
|
uint16_t position; /**< Offset of the slave in the ring. */
|
|
uint32_t vendor_id; /**< Vendor-ID stored on the slave. */
|
|
uint32_t product_code; /**< Product-Code stored on the slave. */
|
|
uint32_t revision_number; /**< Revision-Number stored on the slave. */
|
|
uint32_t serial_number; /**< Serial-Number stored on the slave. */
|
|
uint16_t alias; /**< The slaves alias if not equal to 0. */
|
|
int16_t current_on_ebus; /**< Used current in mA. */
|
|
uint8_t al_state; /**< Current state of the slave. */
|
|
uint8_t error_flag; /**< Error flag for that slave. */
|
|
uint8_t sync_count; /**< Number of sync managers. */
|
|
uint16_t sdo_count; /**< Number of SDO's. */
|
|
char name[EC_MAX_STRING_LENGTH]; /**< Name of the slave. */
|
|
} ec_slave_info_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Domain working counter interpretation.
|
|
*
|
|
* This is used in ec_domain_state_t.
|
|
*/
|
|
typedef enum {
|
|
EC_WC_ZERO = 0, /**< No registered process data were exchanged. */
|
|
EC_WC_INCOMPLETE, /**< Some of the registered process data were
|
|
exchanged. */
|
|
EC_WC_COMPLETE /**< All registered process data were exchanged. */
|
|
} ec_wc_state_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Domain state.
|
|
*
|
|
* This is used for the output parameter of ecrt_domain_state().
|
|
*/
|
|
typedef struct {
|
|
unsigned int working_counter; /**< Value of the last working counter. */
|
|
ec_wc_state_t wc_state; /**< Working counter interpretation. */
|
|
} ec_domain_state_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Direction type for PDO assignment functions.
|
|
*/
|
|
typedef enum {
|
|
EC_DIR_INVALID, /**< Invalid direction. Do not use this value. */
|
|
EC_DIR_OUTPUT, /**< Values written by the master. */
|
|
EC_DIR_INPUT, /**< Values read by the master. */
|
|
EC_DIR_COUNT /**< Number of directions. For internal use only. */
|
|
} ec_direction_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** PDO entry configuration information.
|
|
*
|
|
* This is the data type of the \a entries field in ec_pdo_info_t.
|
|
*
|
|
* \see ecrt_slave_config_pdos().
|
|
*/
|
|
typedef struct {
|
|
uint16_t index; /**< PDO entry index. */
|
|
uint8_t subindex; /**< PDO entry subindex. */
|
|
uint8_t bit_length; /**< Size of the PDO entry in bit. */
|
|
} ec_pdo_entry_info_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** PDO configuration information.
|
|
*
|
|
* This is the data type of the \a pdos field in ec_sync_info_t.
|
|
*
|
|
* \see ecrt_slave_config_pdos().
|
|
*/
|
|
typedef struct {
|
|
uint16_t index; /**< PDO index. */
|
|
unsigned int n_entries; /**< Number of PDO entries in \a entries to map.
|
|
Zero means, that the default mapping shall be
|
|
used (this can only be done if the slave is
|
|
present at bus configuration time). */
|
|
ec_pdo_entry_info_t *entries; /**< Array of PDO entries to map. Can either
|
|
be \a NULL, or must contain at
|
|
least \a n_entries values. */
|
|
} ec_pdo_info_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Sync manager configuration information.
|
|
*
|
|
* This can be use to configure multiple sync managers including the PDO
|
|
* assignment and PDO mapping. It is used as an input parameter type in
|
|
* ecrt_slave_config_pdos().
|
|
*/
|
|
typedef struct {
|
|
uint8_t index; /**< Sync manager index. Must be less
|
|
than #EC_MAX_SYNC_MANAGERS for a valid sync manager,
|
|
but can also be \a 0xff to mark the end of the list. */
|
|
ec_direction_t dir; /**< Sync manager direction. */
|
|
unsigned int n_pdos; /**< Number of PDOs in \a pdos. */
|
|
ec_pdo_info_t *pdos; /**< Array with PDOs to assign. This must contain
|
|
at least \a n_pdos PDOs. */
|
|
} ec_sync_info_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** List record type for PDO entry mass-registration.
|
|
*
|
|
* This type is used for the array parameter of the
|
|
* ecrt_domain_reg_pdo_entry_list()
|
|
*/
|
|
typedef struct {
|
|
uint16_t alias; /**< Slave alias address. */
|
|
uint16_t position; /**< Slave position. */
|
|
uint32_t vendor_id; /**< Slave vendor ID. */
|
|
uint32_t product_code; /**< Slave product code. */
|
|
uint16_t index; /**< PDO entry index. */
|
|
uint8_t subindex; /**< PDO entry subindex. */
|
|
unsigned int *offset; /**< Pointer to a variable to store the PDO entry's
|
|
(byte-)offset in the process data. */
|
|
unsigned int *bit_position; /**< Pointer to a variable to store a bit
|
|
position (0-7) within the \a offset. Can be
|
|
NULL, in which case an error is raised if the
|
|
PDO entry does not byte-align. */
|
|
} ec_pdo_entry_reg_t;
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** Request state.
|
|
*
|
|
* This is used as return type for ecrt_sdo_request_state() and
|
|
* ecrt_voe_handler_state().
|
|
*/
|
|
typedef enum {
|
|
EC_REQUEST_UNUSED, /**< Not requested. */
|
|
EC_REQUEST_BUSY, /**< Request is being processed. */
|
|
EC_REQUEST_SUCCESS, /**< Request was processed successfully. */
|
|
EC_REQUEST_ERROR, /**< Request processing failed. */
|
|
} ec_request_state_t;
|
|
|
|
/******************************************************************************
|
|
* Global functions
|
|
*****************************************************************************/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/** Returns the version magic of the realtime interface.
|
|
*
|
|
* \return Value of ECRT_VERSION_MAGIC() at EtherCAT master compile time.
|
|
*/
|
|
unsigned int ecrt_version_magic(void);
|
|
|
|
/** Requests an EtherCAT master for realtime operation.
|
|
*
|
|
* Before an application can access an EtherCAT master, it has to reserve one
|
|
* for exclusive use.
|
|
*
|
|
* This function has to be the first function an application has to call to
|
|
* use EtherCAT. The function takes the index of the master as its argument.
|
|
* The first master has index 0, the n-th master has index n - 1. The number
|
|
* of masters has to be specified when loading the master module.
|
|
*
|
|
* \return Pointer to the reserved master, otherwise \a NULL.
|
|
*/
|
|
ec_master_t *ecrt_request_master(
|
|
unsigned int master_index /**< Index of the master to request. */
|
|
);
|
|
|
|
/** Releases a requested EtherCAT master.
|
|
*
|
|
* After use, a master it has to be released to make it available for other
|
|
* applications.
|
|
*/
|
|
void ecrt_release_master(
|
|
ec_master_t *master /**< EtherCAT master */
|
|
);
|
|
|
|
/******************************************************************************
|
|
* Master methods
|
|
*****************************************************************************/
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/** Sets the locking callbacks.
|
|
*
|
|
* For concurrent master access, the application has to provide a locking
|
|
* mechanism (see section FIXME in the docs). The method takes two function
|
|
* pointers and a data value as its parameters. The arbitrary \a cb_data value
|
|
* will be passed as argument on every callback. Asynchronous master access
|
|
* (like EoE processing) is only possible if the callbacks have been set.
|
|
*
|
|
* The request_cb function must return zero, to allow another instance
|
|
* (an EoE process for example) to access the master. Non-zero means,
|
|
* that access is currently forbidden.
|
|
*/
|
|
void ecrt_master_callbacks(
|
|
ec_master_t *master, /**< EtherCAT master */
|
|
int (*request_cb)(void *), /**< Lock request function. */
|
|
void (*release_cb)(void *), /**< Lock release function. */
|
|
void *cb_data /**< Arbitrary user data. */
|
|
);
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
/** Creates a new process data domain.
|
|
*
|
|
* For process data exchange, at least one process data domain is needed.
|
|
* This method creates a new process data domain and returns a pointer to the
|
|
* new domain object. This object can be used for registering PDOs and
|
|
* exchanging them in cyclic operation.
|
|
*
|
|
* \return Pointer to the new domain on success, else NULL.
|
|
*/
|
|
ec_domain_t *ecrt_master_create_domain(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
/** Obtains a slave configuration.
|
|
*
|
|
* Creates a slave configuration object for the given \a alias and \a position
|
|
* tuple and returns it. If a configuration with the same \a alias and \a
|
|
* position already exists, it will be re-used. In the latter case, the given
|
|
* vendor ID and product code are compared to the stored ones. On mismatch, an
|
|
* error message is raised and the function returns \a NULL.
|
|
*
|
|
* Slaves are addressed with the \a alias and \a position parameters.
|
|
* - If \a alias is zero, \a position is interpreted as the desired slave's
|
|
* ring position.
|
|
* - If \a alias is non-zero, it matches a slave with the given alias. In this
|
|
* case, \a position is interpreted as ring offset, starting from the
|
|
* aliased slave, so a position of zero means the aliased slave itself and a
|
|
* positive value matches the n-th slave behind the aliased one.
|
|
*
|
|
* If the slave with the given address is found during the bus configuration,
|
|
* its vendor ID and product code are matched against the given value. On
|
|
* mismatch, the slave is not configured and an error message is raised.
|
|
*
|
|
* If different slave configurations are pointing to the same slave during bus
|
|
* configuration, a warning is raised and only the first configuration is
|
|
* applied.
|
|
*
|
|
* \retval >0 Pointer to the slave configuration structure.
|
|
* \retval NULL in the error case.
|
|
*/
|
|
ec_slave_config_t *ecrt_master_slave_config(
|
|
ec_master_t *master, /**< EtherCAT master */
|
|
uint16_t alias, /**< Slave alias. */
|
|
uint16_t position, /**< Slave position. */
|
|
uint32_t vendor_id, /**< Expected vendor ID. */
|
|
uint32_t product_code /**< Expected product code. */
|
|
);
|
|
|
|
#ifndef __KERNEL__
|
|
|
|
/** Obtains slave information.
|
|
*
|
|
* Tries to find the slave with the given ring position. The obtained
|
|
* information is stored in a structure. No memory is allocated on the heap in
|
|
* this function.
|
|
*
|
|
* \attention The pointer to this structure must point to a valid variable.
|
|
*
|
|
* \return 0 in case of success, else < 0
|
|
*/
|
|
int ecrt_master_slave(
|
|
ec_master_t *master, /**< EtherCAT master */
|
|
uint16_t position, /**< Slave position. */
|
|
ec_slave_info_t *slave_info /**< Structure that will output the
|
|
information */
|
|
);
|
|
|
|
#endif /* ifndef __KERNEL__ */
|
|
|
|
/** Finishes the configuration phase and prepares for cyclic operation.
|
|
*
|
|
* This function tells the master that the configuration phase is finished and
|
|
* the realtime operation will begin. The function allocates internal memory
|
|
* for the domains and calculates the logical FMMU addresses for domain
|
|
* members. It tells the master state machine that the bus configuration is
|
|
* now to be applied.
|
|
*
|
|
* \attention After this function has been called, the realtime application is
|
|
* in charge of cyclically calling ecrt_master_send() and
|
|
* ecrt_master_receive() to ensure bus communication. Before calling this
|
|
* function, the master thread is responsible for that, so these functions may
|
|
* not be called!
|
|
*
|
|
* \return 0 in case of success, else < 0
|
|
*/
|
|
int ecrt_master_activate(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
/** Sends all datagrams in the queue.
|
|
*
|
|
* This method takes all datagrams, that have been queued for transmission,
|
|
* puts them into frames, and passes them to the Ethernet device for sending.
|
|
*
|
|
* Has to be called cyclically by the application after ecrt_master_activate()
|
|
* has returned.
|
|
*/
|
|
void ecrt_master_send(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
/** Fetches received frames from the hardware and processes the datagrams.
|
|
*
|
|
* Queries the network device for received frames by calling the interrupt
|
|
* service routine. Extracts received datagrams and dispatches the results to
|
|
* the datagram objects in the queue. Received datagrams, and the ones that
|
|
* timed out, will be marked, and dequeued.
|
|
*
|
|
* Has to be called cyclically by the realtime application after
|
|
* ecrt_master_activate() has returned.
|
|
*/
|
|
void ecrt_master_receive(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
/** Reads the current master state.
|
|
*
|
|
* Stores the master state information in the given \a state structure.
|
|
*/
|
|
void ecrt_master_state(
|
|
const ec_master_t *master, /**< EtherCAT master. */
|
|
ec_master_state_t *state /**< Structure to store the information. */
|
|
);
|
|
|
|
/** Sets the application time.
|
|
*
|
|
* The master has to know the application's time when operating slaves with
|
|
* distributed clocks. The time is not incremented by the master itself, so
|
|
* this method has to be called cyclically.
|
|
*
|
|
* The time is used when setting the slaves' <tt>System Time Offset</tt> and
|
|
* <tt>Cyclic Operation Start Time</tt> registers and when synchronizing the
|
|
* DC reference clock to the application time via
|
|
* ecrt_master_sync_reference_clock().
|
|
*
|
|
* The time is defined as nanoseconds from 2000-01-01 00:00. Converting an
|
|
* epoch time can be done with the EC_TIMEVAL2NANO() macro.
|
|
*/
|
|
void ecrt_master_application_time(
|
|
ec_master_t *master, /**< EtherCAT master. */
|
|
uint64_t app_time /**< Application time. */
|
|
);
|
|
|
|
/** Queues the DC reference clock drift compensation datagram for sending.
|
|
*
|
|
* The reference clock will by synchronized to the application time provided
|
|
* by the last call off ecrt_master_application_time().
|
|
*/
|
|
void ecrt_master_sync_reference_clock(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
/** Queues the DC clock drift compensation datagram for sending.
|
|
*
|
|
* All slave clocks synchronized to the reference clock.
|
|
*/
|
|
void ecrt_master_sync_slave_clocks(
|
|
ec_master_t *master /**< EtherCAT master. */
|
|
);
|
|
|
|
#ifndef __KERNEL__
|
|
|
|
/** Executes an SDO write request to download data.
|
|
*
|
|
* This function operates aside of the normal way to request SDOs. Before the
|
|
* activation of the master, these requests are processed by the master state
|
|
* machine itself. After activation the user has to ensure cyclic processing.
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval -1 An error occured.
|
|
*/
|
|
int ecrt_slave_sdo_download(
|
|
ec_master_t* master, /**< EtherCAT master. */
|
|
uint16_t slave_position, /**< Slave position. */
|
|
uint16_t index, /**< Index of the SDO. */
|
|
uint8_t subindex, /**< Subindex of the SDO. */
|
|
uint8_t *data, /**< Data buffer to download. */
|
|
size_t data_size, /**< Size of the data buffer. */
|
|
uint32_t *abort_code /**< Abort code of the SDO download. */
|
|
);
|
|
|
|
/** Executes a SDO read request to upload data.
|
|
*
|
|
* This function operates aside of the normal way to request SDOs. Before the
|
|
* activation of the master, these requests are processed by the master state
|
|
* machine itself. After activation the user have to ensure cyclic
|
|
* processing.
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval -1 Error occured.
|
|
*/
|
|
int ecrt_slave_sdo_upload(
|
|
ec_master_t* master, /**< EtherCAT master. */
|
|
uint16_t slave_position, /**< Slave position. */
|
|
uint16_t index, /**< Index of the SDO. */
|
|
uint8_t subindex, /**< Subindex of the SDO. */
|
|
uint8_t *target, /**< Target buffer for the upload. */
|
|
size_t target_size, /**< Size of the target buffer. */
|
|
size_t *result_size, /**< Uploaded data size. */
|
|
uint32_t *abort_code /**< Abort code of the SDO upload. */
|
|
);
|
|
|
|
#endif /* ifndef __KERNEL__ */
|
|
|
|
/******************************************************************************
|
|
* Slave configuration methods
|
|
*****************************************************************************/
|
|
|
|
/** Configure a sync manager.
|
|
*
|
|
* Sets the direction of a sync manager. This overrides the direction bits
|
|
* from the default control register from SII.
|
|
*
|
|
* \return zero on success, else non-zero
|
|
*/
|
|
int ecrt_slave_config_sync_manager(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint8_t sync_index, /**< Sync manager index. Must be less
|
|
than #EC_MAX_SYNC_MANAGERS. */
|
|
ec_direction_t dir /**< Input/Output. */
|
|
);
|
|
|
|
/** Add a PDO to a sync manager's PDO assignment.
|
|
*
|
|
* \see ecrt_slave_config_pdos()
|
|
* \return zero on success, else non-zero
|
|
*/
|
|
int ecrt_slave_config_pdo_assign_add(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint8_t sync_index, /**< Sync manager index. Must be less
|
|
than #EC_MAX_SYNC_MANAGERS. */
|
|
uint16_t index /**< Index of the PDO to assign. */
|
|
);
|
|
|
|
/** Clear a sync manager's PDO assignment.
|
|
*
|
|
* This can be called before assigning PDOs via
|
|
* ecrt_slave_config_pdo_assign_add(), to clear the default assignment of a
|
|
* sync manager.
|
|
*
|
|
* \see ecrt_slave_config_pdos()
|
|
*/
|
|
void ecrt_slave_config_pdo_assign_clear(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint8_t sync_index /**< Sync manager index. Must be less
|
|
than #EC_MAX_SYNC_MANAGERS. */
|
|
);
|
|
|
|
/** Add a PDO entry to the given PDO's mapping.
|
|
*
|
|
* \see ecrt_slave_config_pdos()
|
|
* \return zero on success, else non-zero
|
|
*/
|
|
int ecrt_slave_config_pdo_mapping_add(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t pdo_index, /**< Index of the PDO. */
|
|
uint16_t entry_index, /**< Index of the PDO entry to add to the PDO's
|
|
mapping. */
|
|
uint8_t entry_subindex, /**< Subindex of the PDO entry to add to the
|
|
PDO's mapping. */
|
|
uint8_t entry_bit_length /**< Size of the PDO entry in bit. */
|
|
);
|
|
|
|
/** Clear the mapping of a given PDO.
|
|
*
|
|
* This can be called before mapping PDO entries via
|
|
* ecrt_slave_config_pdo_mapping_add(), to clear the default mapping.
|
|
*
|
|
* \see ecrt_slave_config_pdos()
|
|
*/
|
|
void ecrt_slave_config_pdo_mapping_clear(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t pdo_index /**< Index of the PDO. */
|
|
);
|
|
|
|
/** Specify a complete PDO configuration.
|
|
*
|
|
* This function is a convenience wrapper for the functions
|
|
* ecrt_slave_config_sync_manager(), ecrt_slave_config_pdo_assign_clear(),
|
|
* ecrt_slave_config_pdo_assign_add(), ecrt_slave_config_pdo_mapping_clear()
|
|
* and ecrt_slave_config_pdo_mapping_add(), that are better suitable for
|
|
* automatic code generation.
|
|
*
|
|
* The following example shows, how to specify a complete configuration,
|
|
* including the PDO mappings. With this information, the master is able to
|
|
* reserve the complete process data, even if the slave is not present at
|
|
* configuration time:
|
|
*
|
|
* \code
|
|
* ec_pdo_entry_info_t el3162_channel1[] = {
|
|
* {0x3101, 1, 8}, // status
|
|
* {0x3101, 2, 16} // value
|
|
* };
|
|
*
|
|
* ec_pdo_entry_info_t el3162_channel2[] = {
|
|
* {0x3102, 1, 8}, // status
|
|
* {0x3102, 2, 16} // value
|
|
* };
|
|
*
|
|
* ec_pdo_info_t el3162_pdos[] = {
|
|
* {0x1A00, 2, el3162_channel1},
|
|
* {0x1A01, 2, el3162_channel2}
|
|
* };
|
|
*
|
|
* ec_sync_info_t el3162_syncs[] = {
|
|
* {2, EC_DIR_OUTPUT},
|
|
* {3, EC_DIR_INPUT, 2, el3162_pdos},
|
|
* {0xff}
|
|
* };
|
|
*
|
|
* if (ecrt_slave_config_pdos(sc_ana_in, EC_END, el3162_syncs)) {
|
|
* // handle error
|
|
* }
|
|
* \endcode
|
|
*
|
|
* The next example shows, how to configure the PDO assignment only. The
|
|
* entries for each assigned PDO are taken from the PDO's default mapping.
|
|
* Please note, that PDO entry registration will fail, if the PDO
|
|
* configuration is left empty and the slave is offline.
|
|
*
|
|
* \code
|
|
* ec_pdo_info_t pdos[] = {
|
|
* {0x1600}, // Channel 1
|
|
* {0x1601} // Channel 2
|
|
* };
|
|
*
|
|
* ec_sync_info_t syncs[] = {
|
|
* {3, EC_DIR_INPUT, 2, pdos},
|
|
* };
|
|
*
|
|
* if (ecrt_slave_config_pdos(slave_config_ana_in, 1, syncs)) {
|
|
* // handle error
|
|
* }
|
|
* \endcode
|
|
*
|
|
* Processing of \a syncs will stop, if
|
|
* - the number of processed items reaches \a n_syncs, or
|
|
* - the \a index member of an ec_sync_info_t item is 0xff. In this case,
|
|
* \a n_syncs should set to a number greater than the number of list items;
|
|
* using EC_END is recommended.
|
|
*
|
|
* \return zero on success, else non-zero
|
|
*/
|
|
int ecrt_slave_config_pdos(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
unsigned int n_syncs, /**< Number of sync manager configurations in
|
|
\a syncs. */
|
|
const ec_sync_info_t syncs[] /**< Array of sync manager
|
|
configurations. */
|
|
);
|
|
|
|
/** Registers a PDO entry for process data exchange in a domain.
|
|
*
|
|
* Searches the assigned PDOs for the given PDO entry. An error is raised, if
|
|
* the given entry is not mapped. Otherwise, the corresponding sync manager
|
|
* and FMMU configurations are provided for slave configuration and the
|
|
* respective sync manager's assigned PDOs are appended to the given domain,
|
|
* if not already done. The offset of the requested PDO entry's data inside
|
|
* the domain's process data is returned. Optionally, the PDO entry bit
|
|
* position (0-7) can be retrieved via the \a bit_position output parameter.
|
|
* This pointer may be \a NULL, in this case an error is raised if the PDO
|
|
* entry does not byte-align.
|
|
*
|
|
* \retval >=0 Success: Offset of the PDO entry's process data.
|
|
* \retval <0 Error code.
|
|
*/
|
|
int ecrt_slave_config_reg_pdo_entry(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t entry_index, /**< Index of the PDO entry to register. */
|
|
uint8_t entry_subindex, /**< Subindex of the PDO entry to register. */
|
|
ec_domain_t *domain, /**< Domain. */
|
|
unsigned int *bit_position /**< Optional address if bit addressing
|
|
is desired */
|
|
);
|
|
|
|
/** Configure distributed clocks.
|
|
*
|
|
* Sets the AssignActivate word and the cycle and shift times for the sync
|
|
* signals.
|
|
*
|
|
* The AssignActivate word is vendor-specific and can be taken from the XML
|
|
* device description file (Device -> Dc -> AssignActivate). Set this to zero,
|
|
* if the slave shall be operated without distributed clocks (default).
|
|
*/
|
|
void ecrt_slave_config_dc(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t assign_activate, /**< AssignActivate word. */
|
|
uint32_t sync0_cycle, /**< SYNC0 cycle time [ns]. */
|
|
uint32_t sync0_shift, /**< SYNC0 shift time [ns]. */
|
|
uint32_t sync1_cycle, /**< SYNC1 cycle time [ns]. */
|
|
uint32_t sync1_shift /**< SYNC1 shift time [ns]. */
|
|
);
|
|
|
|
/** Add an SDO configuration.
|
|
*
|
|
* An SDO configuration is stored in the slave configuration object and is
|
|
* downloaded to the slave whenever the slave is being configured by the
|
|
* master. This usually happens once on master activation, but can be repeated
|
|
* subsequently, for example after the slave's power supply failed.
|
|
*
|
|
* \attention The SDOs for PDO assignment (\p 0x1C10 - \p 0x1C2F) and PDO
|
|
* mapping (\p 0x1600 - \p 0x17FF and \p 0x1A00 - \p 0x1BFF) should not be
|
|
* configured with this function, because they are part of the slave
|
|
* configuration done by the master. Please use ecrt_slave_config_pdos() and
|
|
* friends instead.
|
|
*
|
|
* This is the generic function for adding an SDO configuration. Please note
|
|
* that the this function does not do any endianess correction. If
|
|
* datatype-specific functions are needed (that automatically correct the
|
|
* endianess), have a look at ecrt_slave_config_sdo8(),
|
|
* ecrt_slave_config_sdo16() and ecrt_slave_config_sdo32().
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval <0 Error code.
|
|
*/
|
|
int ecrt_slave_config_sdo(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t index, /**< Index of the SDO to configure. */
|
|
uint8_t subindex, /**< Subindex of the SDO to configure. */
|
|
const uint8_t *data, /**< Pointer to the data. */
|
|
size_t size /**< Size of the \a data. */
|
|
);
|
|
|
|
/** Add a configuration value for an 8-bit SDO.
|
|
*
|
|
* \see ecrt_slave_config_sdo().
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval <0 Error code.
|
|
*/
|
|
int ecrt_slave_config_sdo8(
|
|
ec_slave_config_t *sc, /**< Slave configuration */
|
|
uint16_t sdo_index, /**< Index of the SDO to configure. */
|
|
uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */
|
|
uint8_t value /**< Value to set. */
|
|
);
|
|
|
|
/** Add a configuration value for a 16-bit SDO.
|
|
*
|
|
* \see ecrt_slave_config_sdo().
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval <0 Error code.
|
|
*/
|
|
int ecrt_slave_config_sdo16(
|
|
ec_slave_config_t *sc, /**< Slave configuration */
|
|
uint16_t sdo_index, /**< Index of the SDO to configure. */
|
|
uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */
|
|
uint16_t value /**< Value to set. */
|
|
);
|
|
|
|
/** Add a configuration value for a 32-bit SDO.
|
|
*
|
|
* \see ecrt_slave_config_sdo().
|
|
*
|
|
* \retval 0 Success.
|
|
* \retval <0 Error code.
|
|
*/
|
|
int ecrt_slave_config_sdo32(
|
|
ec_slave_config_t *sc, /**< Slave configuration */
|
|
uint16_t sdo_index, /**< Index of the SDO to configure. */
|
|
uint8_t sdo_subindex, /**< Subindex of the SDO to configure. */
|
|
uint32_t value /**< Value to set. */
|
|
);
|
|
|
|
/** Create an SDO request to exchange SDOs during realtime operation.
|
|
*
|
|
* The created SDO request object is freed automatically when the master is
|
|
* released.
|
|
*/
|
|
ec_sdo_request_t *ecrt_slave_config_create_sdo_request(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
uint16_t index, /**< SDO index. */
|
|
uint8_t subindex, /**< SDO subindex. */
|
|
size_t size /**< Data size to reserve. */
|
|
);
|
|
|
|
/** Create an VoE handler to exchange vendor-specific data during realtime
|
|
* operation.
|
|
*
|
|
* The number of VoE handlers per slave configuration is not limited, but
|
|
* usually it is enough to create one for sending and one for receiving, if
|
|
* both can be done simultaneously.
|
|
*
|
|
* The created VoE handler object is freed automatically when the master is
|
|
* released.
|
|
*/
|
|
ec_voe_handler_t *ecrt_slave_config_create_voe_handler(
|
|
ec_slave_config_t *sc, /**< Slave configuration. */
|
|
size_t size /**< Data size to reserve. */
|
|
);
|
|
|
|
/** Outputs the state of the slave configuration.
|
|
*
|
|
* Stores the state information in the given \a state structure.
|
|
*/
|
|
void ecrt_slave_config_state(
|
|
const ec_slave_config_t *sc, /**< Slave configuration */
|
|
ec_slave_config_state_t *state /**< State object to write to. */
|
|
);
|
|
|
|
/******************************************************************************
|
|
* Domain methods
|
|
*****************************************************************************/
|
|
|
|
/** Registers a bunch of PDO entries for a domain.
|
|
*
|
|
* \todo doc
|
|
* \attention The registration array has to be terminated with an empty
|
|
* structure, or one with the \a index field set to zero!
|
|
* \return 0 on success, else non-zero.
|
|
*/
|
|
int ecrt_domain_reg_pdo_entry_list(
|
|
ec_domain_t *domain, /**< Domain. */
|
|
const ec_pdo_entry_reg_t *pdo_entry_regs /**< Array of PDO
|
|
registrations. */
|
|
);
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/** Returns the current size of the domain's process data.
|
|
*
|
|
* \return Size of the process data image.
|
|
*/
|
|
size_t ecrt_domain_size(
|
|
const ec_domain_t *domain /**< Domain. */
|
|
);
|
|
|
|
/** Provide external memory to store the domain's process data.
|
|
*
|
|
* Call this after all PDO entries have been registered and before activating
|
|
* the master.
|
|
*
|
|
* The size of the allocated memory must be at least ecrt_domain_size(), after
|
|
* all PDO entries have been registered.
|
|
*/
|
|
void ecrt_domain_external_memory(
|
|
ec_domain_t *domain, /**< Domain. */
|
|
uint8_t *memory /**< Address of the memory to store the process
|
|
data in. */
|
|
);
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
/** Returns the domain's process data.
|
|
*
|
|
* - In kernel context: If external memory was provided with
|
|
* ecrt_domain_external_memory(), the returned pointer will contain the
|
|
* address of that memory. Otherwise it will point to the internally allocated
|
|
* memory. In the latter case, this method may not be called before
|
|
* ecrt_master_activate().
|
|
*
|
|
* - In userspace context: This method has to be called after
|
|
* ecrt_master_activate() to get the mapped domain process data memory.
|
|
*
|
|
* \return Pointer to the process data memory.
|
|
*/
|
|
uint8_t *ecrt_domain_data(
|
|
ec_domain_t *domain /**< Domain. */
|
|
);
|
|
|
|
/** Determines the states of the domain's datagrams.
|
|
*
|
|
* Evaluates the working counters of the received datagrams and outputs
|
|
* statistics, if necessary. This must be called after ecrt_master_receive()
|
|
* is expected to receive the domain datagrams in order to make
|
|
* ecrt_domain_state() return the result of the last process data exchange.
|
|
*/
|
|
void ecrt_domain_process(
|
|
ec_domain_t *domain /**< Domain. */
|
|
);
|
|
|
|
/** (Re-)queues all domain datagrams in the master's datagram queue.
|
|
*
|
|
* Call this function to mark the domain's datagrams for exchanging at the
|
|
* next call of ecrt_master_send().
|
|
*/
|
|
void ecrt_domain_queue(
|
|
ec_domain_t *domain /**< Domain. */
|
|
);
|
|
|
|
/** Reads the state of a domain.
|
|
*
|
|
* Stores the domain state in the given \a state structure.
|
|
*/
|
|
void ecrt_domain_state(
|
|
const ec_domain_t *domain, /**< Domain. */
|
|
ec_domain_state_t *state /**< Pointer to a state object to store the
|
|
information. */
|
|
);
|
|
|
|
/*****************************************************************************
|
|
* SDO request methods.
|
|
****************************************************************************/
|
|
|
|
/** Set the timeout for an SDO request.
|
|
*
|
|
* If the request cannot be processed in the specified time, if will be marked
|
|
* as failed.
|
|
*
|
|
* The timeout is permanently stored in the request object and is valid until
|
|
* the next call of this method.
|
|
*/
|
|
void ecrt_sdo_request_timeout(
|
|
ec_sdo_request_t *req, /**< SDO request. */
|
|
uint32_t timeout /**< Timeout in milliseconds. Zero means no
|
|
timeout. */
|
|
);
|
|
|
|
/** Access to the SDO request's data.
|
|
*
|
|
* This function returns a pointer to the request's internal SDO data memory.
|
|
*
|
|
* - After a read operation was successful, integer data can be evaluated using
|
|
* the EC_READ_*() macros as usual. Example:
|
|
* \code
|
|
* uint16_t value = EC_READ_U16(ecrt_sdo_request_data(sdo)));
|
|
* \endcode
|
|
* - If a write operation shall be triggered, the data have to be written to
|
|
* the internal memory. Use the EC_WRITE_*() macros, if you are writing
|
|
* integer data. Be sure, that the data fit into the memory. The memory size
|
|
* is a parameter of ecrt_slave_config_create_sdo_request().
|
|
* \code
|
|
* EC_WRITE_U16(ecrt_sdo_request_data(sdo), 0xFFFF);
|
|
* \endcode
|
|
*
|
|
* \attention The return value can be invalid during a read operation, because
|
|
* the internal SDO data memory could be re-allocated if the read SDO data do
|
|
* not fit inside.
|
|
*
|
|
* \return Pointer to the internal SDO data memory.
|
|
*/
|
|
uint8_t *ecrt_sdo_request_data(
|
|
ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
|
|
/** Returns the current SDO data size.
|
|
*
|
|
* When the SDO request is created, the data size is set to the size of the
|
|
* reserved memory. After a read operation the size is set to the size of the
|
|
* read data. The size is not modified in any other situation.
|
|
*
|
|
* \return SDO data size in bytes.
|
|
*/
|
|
size_t ecrt_sdo_request_data_size(
|
|
const ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
|
|
/** Get the current state of the SDO request.
|
|
*
|
|
* \return Request state.
|
|
*/
|
|
#ifdef __KERNEL__
|
|
ec_request_state_t ecrt_sdo_request_state(
|
|
const ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
#else
|
|
ec_request_state_t ecrt_sdo_request_state(
|
|
ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
#endif
|
|
|
|
/** Schedule an SDO write operation.
|
|
*
|
|
* \attention This method may not be called while ecrt_sdo_request_state()
|
|
* returns EC_SDO_REQUEST_BUSY.
|
|
*/
|
|
void ecrt_sdo_request_write(
|
|
ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
|
|
/** Schedule an SDO read operation.
|
|
*
|
|
* \attention This method may not be called while ecrt_sdo_request_state()
|
|
* returns EC_SDO_REQUEST_BUSY.
|
|
*
|
|
* \attention After calling this function, the return value of
|
|
* ecrt_sdo_request_data() must be considered as invalid while
|
|
* ecrt_sdo_request_state() returns EC_SDO_REQUEST_BUSY.
|
|
*/
|
|
void ecrt_sdo_request_read(
|
|
ec_sdo_request_t *req /**< SDO request. */
|
|
);
|
|
|
|
/*****************************************************************************
|
|
* VoE handler methods.
|
|
****************************************************************************/
|
|
|
|
/** Sets the VoE header for future send operations.
|
|
*
|
|
* A VoE message shall contain a 4-byte vendor ID, followed by a 2-byte vendor
|
|
* type at as header. These numbers can be set with this function. The values
|
|
* are valid and will be used for future send operations until the next call
|
|
* of this method.
|
|
*/
|
|
void ecrt_voe_handler_send_header(
|
|
ec_voe_handler_t *voe, /**< VoE handler. */
|
|
uint32_t vendor_id, /**< Vendor ID. */
|
|
uint16_t vendor_type /**< Vendor-specific type. */
|
|
);
|
|
|
|
/** Reads the header data of a received VoE message.
|
|
*
|
|
* This method can be used to get the received VoE header information after a
|
|
* read operation has succeeded.
|
|
*
|
|
* The header information is stored at the memory given by the pointer
|
|
* parameters.
|
|
*/
|
|
void ecrt_voe_handler_received_header(
|
|
const ec_voe_handler_t *voe, /**< VoE handler. */
|
|
uint32_t *vendor_id, /**< Vendor ID. */
|
|
uint16_t *vendor_type /**< Vendor-specific type. */
|
|
);
|
|
|
|
/** Access to the VoE handler's data.
|
|
*
|
|
* This function returns a pointer to the VoE handler's internal memory, that
|
|
* points to the actual VoE data right after the VoE header (see
|
|
* ecrt_voe_handler_send_header()).
|
|
*
|
|
* - After a read operation was successful, the memory contains the received
|
|
* data. The size of the received data can be determined via
|
|
* ecrt_voe_handler_data_size().
|
|
* - Before a write operation is triggered, the data have to be written to the
|
|
* internal memory. Be sure, that the data fit into the memory. The reserved
|
|
* memory size is a parameter of ecrt_slave_config_create_voe_handler().
|
|
*
|
|
* \attention The returned pointer is not necessarily persistent: After a read
|
|
* operation, the internal memory may have been reallocated. This can be
|
|
* avoided by reserving enough memory via the \a size parameter of
|
|
* ecrt_slave_config_create_voe_handler().
|
|
*
|
|
* \return Pointer to the internal memory.
|
|
*/
|
|
uint8_t *ecrt_voe_handler_data(
|
|
ec_voe_handler_t *voe /**< VoE handler. */
|
|
);
|
|
|
|
/** Returns the current data size.
|
|
*
|
|
* The data size is the size of the VoE data without the header (see
|
|
* ecrt_voe_handler_send_header()).
|
|
*
|
|
* When the VoE handler is created, the data size is set to the size of the
|
|
* reserved memory. At a write operation, the data size is set to the number
|
|
* of bytes to write. After a read operation the size is set to the size of
|
|
* the read data. The size is not modified in any other situation.
|
|
*
|
|
* \return Data size in bytes.
|
|
*/
|
|
size_t ecrt_voe_handler_data_size(
|
|
const ec_voe_handler_t *voe /**< VoE handler. */
|
|
);
|
|
|
|
/** Start a VoE write operation.
|
|
*
|
|
* After this function has been called, the ecrt_voe_handler_execute() method
|
|
* must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No
|
|
* other operation may be started while the handler is busy.
|
|
*/
|
|
void ecrt_voe_handler_write(
|
|
ec_voe_handler_t *voe, /**< VoE handler. */
|
|
size_t size /**< Number of bytes to write (without the VoE header). */
|
|
);
|
|
|
|
/** Start a VoE read operation.
|
|
*
|
|
* After this function has been called, the ecrt_voe_handler_execute() method
|
|
* must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No
|
|
* other operation may be started while the handler is busy.
|
|
*
|
|
* The state machine queries the slave's send mailbox for new data to be send
|
|
* to the master. If no data appear within the EC_VOE_RESPONSE_TIMEOUT
|
|
* (defined in master/voe_handler.c), the operation fails.
|
|
*
|
|
* On success, the size of the read data can be determined via
|
|
* ecrt_voe_handler_data_size(), while the VoE header of the received data
|
|
* can be retrieved with ecrt_voe_handler_received_header().
|
|
*/
|
|
void ecrt_voe_handler_read(
|
|
ec_voe_handler_t *voe /**< VoE handler. */
|
|
);
|
|
|
|
/** Start a VoE read operation without querying the sync manager status.
|
|
*
|
|
* After this function has been called, the ecrt_voe_handler_execute() method
|
|
* must be called in every bus cycle as long as it returns EC_REQUEST_BUSY. No
|
|
* other operation may be started while the handler is busy.
|
|
*
|
|
* The state machine queries the slave by sending an empty mailbox. The slave
|
|
* fills its data to the master in this mailbox. If no data appear within the
|
|
* EC_VOE_RESPONSE_TIMEOUT (defined in master/voe_handler.c), the operation
|
|
* fails.
|
|
*
|
|
* On success, the size of the read data can be determined via
|
|
* ecrt_voe_handler_data_size(), while the VoE header of the received data
|
|
* can be retrieved with ecrt_voe_handler_received_header().
|
|
*/
|
|
void ecrt_voe_handler_read_nosync(
|
|
ec_voe_handler_t *voe /**< VoE handler. */
|
|
);
|
|
|
|
/** Execute the handler.
|
|
*
|
|
* This method executes the VoE handler. It has to be called in every bus cycle
|
|
* as long as it returns EC_REQUEST_BUSY.
|
|
*
|
|
* \return Handler state.
|
|
*/
|
|
ec_request_state_t ecrt_voe_handler_execute(
|
|
ec_voe_handler_t *voe /**< VoE handler. */
|
|
);
|
|
|
|
/*****************************************************************************/
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
* Bitwise read/write macros
|
|
*****************************************************************************/
|
|
|
|
/** Read a certain bit of an EtherCAT data byte.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param POS bit position
|
|
*/
|
|
#define EC_READ_BIT(DATA, POS) ((*((uint8_t *) (DATA)) >> (POS)) & 0x01)
|
|
|
|
/** Write a certain bit of an EtherCAT data byte.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param POS bit position
|
|
* \param VAL new bit value
|
|
*/
|
|
#define EC_WRITE_BIT(DATA, POS, VAL) \
|
|
do { \
|
|
if (VAL) *((uint8_t *) (DATA)) |= (1 << (POS)); \
|
|
else *((uint8_t *) (DATA)) &= ~(1 << (POS)); \
|
|
} while (0)
|
|
|
|
/******************************************************************************
|
|
* Byte-swapping functions for user space
|
|
*****************************************************************************/
|
|
|
|
#ifndef __KERNEL__
|
|
|
|
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
|
|
|
#define le16_to_cpu(x) x
|
|
#define le32_to_cpu(x) x
|
|
#define le64_to_cpu(x) x
|
|
|
|
#define cpu_to_le16(x) x
|
|
#define cpu_to_le32(x) x
|
|
#define cpu_to_le64(x) x
|
|
|
|
#elif __BYTE_ORDER == __BIG_ENDIAN
|
|
|
|
#define swap16(x) \
|
|
((uint16_t)( \
|
|
(((uint16_t)(x) & 0x00ffU) << 8) | \
|
|
(((uint16_t)(x) & 0xff00U) >> 8) ))
|
|
#define swap32(x) \
|
|
((uint32_t)( \
|
|
(((uint32_t)(x) & 0x000000ffUL) << 24) | \
|
|
(((uint32_t)(x) & 0x0000ff00UL) << 8) | \
|
|
(((uint32_t)(x) & 0x00ff0000UL) >> 8) | \
|
|
(((uint32_t)(x) & 0xff000000UL) >> 24) ))
|
|
#define swap64(x) \
|
|
((uint64_t)( \
|
|
(((uint64_t)(x) & 0x00000000000000ffULL) << 56) | \
|
|
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \
|
|
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \
|
|
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \
|
|
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \
|
|
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \
|
|
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \
|
|
(((uint64_t)(x) & 0xff00000000000000ULL) >> 56) ))
|
|
|
|
#define le16_to_cpu(x) swap16(x)
|
|
#define le32_to_cpu(x) swap32(x)
|
|
#define le64_to_cpu(x) swap64(x)
|
|
|
|
#define cpu_to_le16(x) swap16(x)
|
|
#define cpu_to_le32(x) swap32(x)
|
|
#define cpu_to_le64(x) swap64(x)
|
|
|
|
#endif
|
|
|
|
#define le16_to_cpup(x) le16_to_cpu(*((uint16_t *)(x)))
|
|
#define le32_to_cpup(x) le32_to_cpu(*((uint32_t *)(x)))
|
|
#define le64_to_cpup(x) le64_to_cpu(*((uint64_t *)(x)))
|
|
|
|
#endif /* ifndef __KERNEL__ */
|
|
|
|
/******************************************************************************
|
|
* Read macros
|
|
*****************************************************************************/
|
|
|
|
/** Read an 8-bit unsigned value from EtherCAT data.
|
|
*
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_U8(DATA) \
|
|
((uint8_t) *((uint8_t *) (DATA)))
|
|
|
|
/** Read an 8-bit signed value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_S8(DATA) \
|
|
((int8_t) *((uint8_t *) (DATA)))
|
|
|
|
/** Read a 16-bit unsigned value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_U16(DATA) \
|
|
((uint16_t) le16_to_cpup((void *) (DATA)))
|
|
|
|
/** Read a 16-bit signed value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_S16(DATA) \
|
|
((int16_t) le16_to_cpup((void *) (DATA)))
|
|
|
|
/** Read a 32-bit unsigned value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_U32(DATA) \
|
|
((uint32_t) le32_to_cpup((void *) (DATA)))
|
|
|
|
/** Read a 32-bit signed value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_S32(DATA) \
|
|
((int32_t) le32_to_cpup((void *) (DATA)))
|
|
|
|
/** Read a 64-bit unsigned value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_U64(DATA) \
|
|
((uint64_t) le64_to_cpup((void *) (DATA)))
|
|
|
|
/** Read a 64-bit signed value from EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \return EtherCAT data value
|
|
*/
|
|
#define EC_READ_S64(DATA) \
|
|
((int64_t) le64_to_cpup((void *) (DATA)))
|
|
|
|
/******************************************************************************
|
|
* Write macros
|
|
*****************************************************************************/
|
|
|
|
/** Write an 8-bit unsigned value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_U8(DATA, VAL) \
|
|
do { \
|
|
*((uint8_t *)(DATA)) = ((uint8_t) (VAL)); \
|
|
} while (0)
|
|
|
|
/** Write an 8-bit signed value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_S8(DATA, VAL) EC_WRITE_U8(DATA, VAL)
|
|
|
|
/** Write a 16-bit unsigned value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_U16(DATA, VAL) \
|
|
do { \
|
|
*((uint16_t *) (DATA)) = cpu_to_le16((uint16_t) (VAL)); \
|
|
} while (0)
|
|
|
|
/** Write a 16-bit signed value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_S16(DATA, VAL) EC_WRITE_U16(DATA, VAL)
|
|
|
|
/** Write a 32-bit unsigned value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_U32(DATA, VAL) \
|
|
do { \
|
|
*((uint32_t *) (DATA)) = cpu_to_le32((uint32_t) (VAL)); \
|
|
} while (0)
|
|
|
|
/** Write a 32-bit signed value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_S32(DATA, VAL) EC_WRITE_U32(DATA, VAL)
|
|
|
|
/** Write a 64-bit unsigned value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_U64(DATA, VAL) \
|
|
do { \
|
|
*((uint64_t *) (DATA)) = cpu_to_le64((uint64_t) (VAL)); \
|
|
} while (0)
|
|
|
|
/** Write a 64-bit signed value to EtherCAT data.
|
|
*
|
|
* \param DATA EtherCAT data pointer
|
|
* \param VAL new value
|
|
*/
|
|
#define EC_WRITE_S64(DATA, VAL) EC_WRITE_U64(DATA, VAL)
|
|
|
|
/*****************************************************************************/
|
|
|
|
/** @} */
|
|
|
|
#endif
|