/***************************************************************************** * * Copyright (C) 2007-2022 Florian Pose, Ingenieurgemeinschaft IgH * * This file is part of the IgH EtherCAT Master. * * The IgH EtherCAT Master is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version 2, as * published by the Free Software Foundation. * * The IgH EtherCAT Master is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General * Public License for more details. * * You should have received a copy of the GNU General Public License along * with the IgH EtherCAT Master; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * --- * * The license mentioned above concerns the source code only. Using the * EtherCAT technology and brand is only permitted in compliance with the * industrial property and similar rights of Beckhoff Automation GmbH. * ****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include /* sched_setscheduler() */ /****************************************************************************/ #include "ecrt.h" /****************************************************************************/ // Application parameters #define FREQUENCY 1000 #define CLOCK_TO_USE CLOCK_MONOTONIC #define MEASURE_TIMING /****************************************************************************/ #define NSEC_PER_SEC (1000000000L) #define PERIOD_NS (NSEC_PER_SEC / FREQUENCY) #define DIFF_NS(A, B) (((B).tv_sec - (A).tv_sec) * NSEC_PER_SEC + \ (B).tv_nsec - (A).tv_nsec) #define TIMESPEC2NS(T) ((uint64_t) (T).tv_sec * NSEC_PER_SEC + (T).tv_nsec) /****************************************************************************/ // EtherCAT static ec_master_t *master = NULL; static ec_master_state_t master_state = {}; static ec_domain_t *domain1 = NULL; static ec_domain_state_t domain1_state = {}; /****************************************************************************/ // process data static uint8_t *domain1_pd = NULL; #define BusCouplerPos 0, 0 #define DigOutSlavePos 0, 1 #define CounterSlavePos 0, 2 #define Beckhoff_EK1100 0x00000002, 0x044c2c52 #define Beckhoff_EL2008 0x00000002, 0x07d83052 #define IDS_Counter 0x000012ad, 0x05de3052 // offsets for PDO entries static int off_dig_out; static int off_counter_in; static int off_counter_out; static unsigned int counter = 0; static unsigned int blink = 0; static unsigned int sync_ref_counter = 0; const struct timespec cycletime = {0, PERIOD_NS}; /****************************************************************************/ struct timespec timespec_add(struct timespec time1, struct timespec time2) { struct timespec result; if ((time1.tv_nsec + time2.tv_nsec) >= NSEC_PER_SEC) { result.tv_sec = time1.tv_sec + time2.tv_sec + 1; result.tv_nsec = time1.tv_nsec + time2.tv_nsec - NSEC_PER_SEC; } else { result.tv_sec = time1.tv_sec + time2.tv_sec; result.tv_nsec = time1.tv_nsec + time2.tv_nsec; } return result; } /****************************************************************************/ void check_domain1_state(void) { ec_domain_state_t ds; ecrt_domain_state(domain1, &ds); if (ds.working_counter != domain1_state.working_counter) printf("Domain1: WC %u.\n", ds.working_counter); if (ds.wc_state != domain1_state.wc_state) printf("Domain1: State %u.\n", ds.wc_state); domain1_state = ds; } /****************************************************************************/ void check_master_state(void) { ec_master_state_t ms; ecrt_master_state(master, &ms); if (ms.slaves_responding != master_state.slaves_responding) printf("%u slave(s).\n", ms.slaves_responding); if (ms.al_states != master_state.al_states) printf("AL states: 0x%02X.\n", ms.al_states); if (ms.link_up != master_state.link_up) printf("Link is %s.\n", ms.link_up ? "up" : "down"); master_state = ms; } /****************************************************************************/ void cyclic_task() { struct timespec wakeupTime, time; #ifdef MEASURE_TIMING struct timespec startTime, endTime, lastStartTime = {}; uint32_t period_ns = 0, exec_ns = 0, latency_ns = 0, latency_min_ns = 0, latency_max_ns = 0, period_min_ns = 0, period_max_ns = 0, exec_min_ns = 0, exec_max_ns = 0; #endif // get current time clock_gettime(CLOCK_TO_USE, &wakeupTime); while(1) { wakeupTime = timespec_add(wakeupTime, cycletime); clock_nanosleep(CLOCK_TO_USE, TIMER_ABSTIME, &wakeupTime, NULL); // Write application time to master // // It is a good idea to use the target time (not the measured time) as // application time, because it is more stable. // ecrt_master_application_time(master, TIMESPEC2NS(wakeupTime)); #ifdef MEASURE_TIMING clock_gettime(CLOCK_TO_USE, &startTime); latency_ns = DIFF_NS(wakeupTime, startTime); period_ns = DIFF_NS(lastStartTime, startTime); exec_ns = DIFF_NS(lastStartTime, endTime); lastStartTime = startTime; if (latency_ns > latency_max_ns) { latency_max_ns = latency_ns; } if (latency_ns < latency_min_ns) { latency_min_ns = latency_ns; } if (period_ns > period_max_ns) { period_max_ns = period_ns; } if (period_ns < period_min_ns) { period_min_ns = period_ns; } if (exec_ns > exec_max_ns) { exec_max_ns = exec_ns; } if (exec_ns < exec_min_ns) { exec_min_ns = exec_ns; } #endif // receive process data ecrt_master_receive(master); ecrt_domain_process(domain1); // check process data state (optional) check_domain1_state(); if (counter) { counter--; } else { // do this at 1 Hz counter = FREQUENCY; // check for master state (optional) check_master_state(); #ifdef MEASURE_TIMING // output timing stats printf("period %10u ... %10u\n", period_min_ns, period_max_ns); printf("exec %10u ... %10u\n", exec_min_ns, exec_max_ns); printf("latency %10u ... %10u\n", latency_min_ns, latency_max_ns); period_max_ns = 0; period_min_ns = 0xffffffff; exec_max_ns = 0; exec_min_ns = 0xffffffff; latency_max_ns = 0; latency_min_ns = 0xffffffff; #endif // calculate new process data blink = !blink; } // write process data EC_WRITE_U8(domain1_pd + off_dig_out, blink ? 0x66 : 0x99); EC_WRITE_U8(domain1_pd + off_counter_out, blink ? 0x00 : 0x02); if (sync_ref_counter) { sync_ref_counter--; } else { sync_ref_counter = 1; // sync every cycle clock_gettime(CLOCK_TO_USE, &time); ecrt_master_sync_reference_clock_to(master, TIMESPEC2NS(time)); } ecrt_master_sync_slave_clocks(master); // send process data ecrt_domain_queue(domain1); ecrt_master_send(master); #ifdef MEASURE_TIMING clock_gettime(CLOCK_TO_USE, &endTime); #endif } } /****************************************************************************/ int main(int argc, char **argv) { ec_slave_config_t *sc; if (mlockall(MCL_CURRENT | MCL_FUTURE) == -1) { perror("mlockall failed"); return -1; } master = ecrt_request_master(0); if (!master) return -1; domain1 = ecrt_master_create_domain(master); if (!domain1) return -1; // Create configuration for bus coupler sc = ecrt_master_slave_config(master, BusCouplerPos, Beckhoff_EK1100); if (!sc) return -1; if (!(sc = ecrt_master_slave_config(master, DigOutSlavePos, Beckhoff_EL2008))) { fprintf(stderr, "Failed to get slave configuration.\n"); return -1; } off_dig_out = ecrt_slave_config_reg_pdo_entry(sc, 0x7000, 1, domain1, NULL); if (off_dig_out < 0) return -1; if (!(sc = ecrt_master_slave_config(master, CounterSlavePos, IDS_Counter))) { fprintf(stderr, "Failed to get slave configuration.\n"); return -1; } off_counter_in = ecrt_slave_config_reg_pdo_entry(sc, 0x6020, 0x11, domain1, NULL); if (off_counter_in < 0) return -1; off_counter_out = ecrt_slave_config_reg_pdo_entry(sc, 0x7020, 1, domain1, NULL); if (off_counter_out < 0) return -1; // configure SYNC signals for this slave ecrt_slave_config_dc(sc, 0x0700, PERIOD_NS, 4400000, 0, 0); printf("Activating master...\n"); if (ecrt_master_activate(master)) return -1; if (!(domain1_pd = ecrt_domain_data(domain1))) { return -1; } /* Set priority */ struct sched_param param = {}; param.sched_priority = sched_get_priority_max(SCHED_FIFO); printf("Using priority %i.", param.sched_priority); if (sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) { perror("sched_setscheduler failed"); } printf("Starting cyclic function.\n"); cyclic_task(); return 0; } /****************************************************************************/