Files
deepmind-research/perceiver/io_processors.py
2023-06-02 18:02:16 +01:00

831 lines
29 KiB
Python

# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""IO pre- and post-processors for Perceiver."""
import functools
import math
from typing import Any, Callable, Mapping, Optional, Sequence, Tuple
import einops
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
from perceiver import position_encoding
ModalitySizeT = Mapping[str, int]
PreprocessorOutputT = Tuple[jnp.ndarray, Optional[jnp.ndarray], jnp.ndarray]
PreprocessorT = Callable[..., PreprocessorOutputT]
PostprocessorT = Callable[..., Any]
def reverse_space_to_depth(
frames: jnp.ndarray,
temporal_block_size: int = 1,
spatial_block_size: int = 1) -> jnp.ndarray:
"""Reverse space to depth transform."""
if len(frames.shape) == 4:
return einops.rearrange(
frames, 'b h w (dh dw c) -> b (h dh) (w dw) c',
dh=spatial_block_size, dw=spatial_block_size)
elif len(frames.shape) == 5:
return einops.rearrange(
frames, 'b t h w (dt dh dw c) -> b (t dt) (h dh) (w dw) c',
dt=temporal_block_size, dh=spatial_block_size, dw=spatial_block_size)
else:
raise ValueError(
'Frames should be of rank 4 (batch, height, width, channels)'
' or rank 5 (batch, time, height, width, channels)')
def space_to_depth(
frames: jnp.ndarray,
temporal_block_size: int = 1,
spatial_block_size: int = 1) -> jnp.ndarray:
"""Space to depth transform."""
if len(frames.shape) == 4:
return einops.rearrange(
frames, 'b (h dh) (w dw) c -> b h w (dh dw c)',
dh=spatial_block_size, dw=spatial_block_size)
elif len(frames.shape) == 5:
return einops.rearrange(
frames, 'b (t dt) (h dh) (w dw) c -> b t h w (dt dh dw c)',
dt=temporal_block_size, dh=spatial_block_size, dw=spatial_block_size)
else:
raise ValueError(
'Frames should be of rank 4 (batch, height, width, channels)'
' or rank 5 (batch, time, height, width, channels)')
def extract_patches(images: jnp.ndarray,
sizes: Sequence[int],
strides: Sequence[int],
rates: Sequence[int],
padding: str = 'VALID') -> jnp.ndarray:
"""Extract patches from images.
This function is a wrapper for jax.lax.conv_general_dilated_patches
to conforms to the same interface as tf.image.extract_patches.
The function extracts patches of shape sizes from the input images in the same
manner as a convolution with kernel of shape sizes, stride equal to strides,
and the given padding scheme.
The patches are stacked in the channel dimension.
Args:
images: input batch of images of shape [B, H, W, C].
sizes: size of extracted patches. Must be [1, size_rows, size_cols, 1].
strides: strides, must be [1, stride_rows, stride_cols, 1].
rates: sampling rate (as in dilated convolutions),
must be [1, rate_rows, rate_cols, 1].
padding: padding algorithm to use.
Returns:
Tensor of shape [B, patch_rows, patch_cols, size_rows * size_cols * C]
"""
if len(sizes) != 4 or sizes[0] != 1 or sizes[3] != 1:
raise ValueError(
f'Shape of sizes must be [1, size_rows, size_cols, 1], got {sizes}.')
if len(strides) != 4 or strides[0] != 1 or strides[3] != 1:
raise ValueError(
f'Shape of strides must be [1, size_rows, size_cols, 1], '
f'got {strides}.')
if len(rates) != 4 or rates[0] != 1 or rates[3] != 1:
raise ValueError(
f'Shape of rates must be [1, size_rows, size_cols, 1], got {rates}.')
if images.ndim != 4:
raise ValueError(
f'Rank of images must be 4 (got tensor of shape {jnp.shape(images)})')
# Rearrange axes of images to NCHW for conv_general_dilated_patches
images = einops.rearrange(images, 'n h w c -> n c h w')
channels = images.shape[1]
patches = jax.lax.conv_general_dilated_patches(
images, sizes[1:-1], strides[1:-1], padding, rhs_dilation=rates[1:-1])
# conv_general_dilated_patches returns patches in channel-major order.
# Rearrange to match interface of tf.image.extract_patches.
patches = einops.rearrange(patches, 'n (c ph pw) h w -> n h w (ph pw c)',
c=channels, ph=sizes[1], pw=sizes[2])
return patches
def patches_for_flow(inputs: jnp.ndarray) -> jnp.ndarray:
"""Extract 3x3x2 image patches for flow inputs."""
def pad_and_extract_patches(inputs):
padded_inputs = jnp.pad(inputs, [[0, 0], [1, 1], [1, 1], [0, 0]],
mode='constant')
return extract_patches(
padded_inputs,
sizes=[1, 3, 3, 1],
strides=[1, 1, 1, 1],
padding='VALID',
rates=[1, 1, 1, 1])
return jax.vmap(pad_and_extract_patches, in_axes=1, out_axes=1)(inputs)
# ------------------------------------------------------------
# ------------------- Up/down-sampling ---------------------
# ------------------------------------------------------------
class Conv2DDownsample(hk.Module):
"""Downsamples 4x by applying a 2D convolution and doing max pooling."""
def __init__(
self,
num_layers: int = 1,
num_channels: int = 64,
use_batchnorm: bool = True,
bn_config: Optional[Mapping[str, float]] = None,
name: Optional[str] = None,
):
"""Constructs a Conv2DDownsample model.
Args:
num_layers: The number of conv->max_pool layers.
num_channels: The number of conv output channels.
use_batchnorm: Whether to use batchnorm.
bn_config: A dictionary of two elements, ``decay_rate`` and ``eps`` to be
passed on to the :class:`~haiku.BatchNorm` layers. By default the
``decay_rate`` is ``0.9`` and ``eps`` is ``1e-5``.
name: Name of the module.
"""
super().__init__(name=name)
self._num_layers = num_layers
self._use_batchnorm = use_batchnorm
bn_config = dict(bn_config or {})
bn_config.setdefault('decay_rate', 0.9)
bn_config.setdefault('eps', 1e-5)
bn_config.setdefault('create_scale', True)
bn_config.setdefault('create_offset', True)
self.layers = []
for _ in range(self._num_layers):
conv = hk.Conv2D(
output_channels=num_channels,
kernel_shape=7,
stride=2,
with_bias=False,
padding='SAME',
name='conv')
if use_batchnorm:
batchnorm = hk.BatchNorm(name='batchnorm', **bn_config)
else:
batchnorm = None
self.layers.append(dict(conv=conv, batchnorm=batchnorm))
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
test_local_stats: bool = False) -> jnp.ndarray:
out = inputs
for layer in self.layers:
out = layer['conv'](out)
if layer['batchnorm'] is not None:
out = layer['batchnorm'](out, is_training, test_local_stats)
out = jax.nn.relu(out)
out = hk.max_pool(out,
window_shape=(1, 3, 3, 1),
strides=(1, 2, 2, 1),
padding='SAME')
return out
class Conv2DUpsample(hk.Module):
"""Upsamples 4x using 2 2D transposed convolutions."""
def __init__(
self,
n_outputs: int,
name: Optional[str] = None,
):
"""Constructs a Conv2DUpsample model.
Args:
n_outputs: The number of output channels of the module.
name: Name of the module.
"""
super().__init__(name=name)
self.transp_conv1 = hk.Conv2DTranspose(
output_channels=n_outputs*2,
kernel_shape=4,
stride=2,
with_bias=True,
padding='SAME',
name='transp_conv_1')
self.transp_conv2 = hk.Conv2DTranspose(
output_channels=n_outputs,
kernel_shape=4,
stride=2,
with_bias=True,
padding='SAME',
name='transp_conv_2')
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
test_local_stats: bool = False) -> jnp.ndarray:
out = inputs
out = self.transp_conv1(out)
out = jax.nn.relu(out)
out = self.transp_conv2(out)
return out
class Conv3DUpsample(hk.Module):
"""Simple convolutional auto-encoder."""
def __init__(self,
n_outputs: int,
n_time_upsamples: int = 2,
n_space_upsamples: int = 4,
name: Optional[str] = None):
super().__init__(name=name)
self._n_outputs = n_outputs
self._n_time_upsamples = n_time_upsamples
self._n_space_upsamples = n_space_upsamples
def __call__(self, x: jnp.ndarray, *, is_training: bool) -> jnp.ndarray:
n_upsamples = max(self._n_time_upsamples, self._n_space_upsamples)
time_stride = 2
space_stride = 2
for i in range(n_upsamples):
if i >= self._n_time_upsamples:
time_stride = 1
if i >= self._n_space_upsamples:
space_stride = 1
channels = self._n_outputs * pow(2, n_upsamples - 1 - i)
x = hk.Conv3DTranspose(output_channels=channels,
stride=[time_stride, space_stride, space_stride],
kernel_shape=[4, 4, 4],
name=f'conv3d_transpose_{i}')(x)
if i != n_upsamples - 1:
x = jax.nn.relu(x)
return x
class ImagePreprocessor(hk.Module):
"""Image preprocessing for Perceiver Encoder."""
def __init__(
self,
prep_type='conv',
spatial_downsample: int = 4,
temporal_downsample: int = 1,
position_encoding_type: str = 'fourier',
n_extra_pos_mlp: int = 0,
num_channels: int = 64,
conv_after_patching: bool = False,
conv2d_use_batchnorm: bool = True,
concat_or_add_pos: str = 'concat',
name: Optional[str] = None,
**position_encoding_kwargs):
super().__init__(name=name)
if prep_type not in ('conv', 'patches', 'pixels', 'conv1x1'):
raise ValueError('Invalid prep_type!')
if concat_or_add_pos not in ['concat', 'add']:
raise ValueError(
f'Invalid value {concat_or_add_pos} for concat_or_add_pos.')
self._prep_type = prep_type
self._spatial_downsample = spatial_downsample
self._temporal_downsample = temporal_downsample
self._concat_or_add_pos = concat_or_add_pos
self._conv_after_patching = conv_after_patching
self._num_channels = num_channels
if self._prep_type == 'conv':
# Downsampling with conv is currently restricted
convnet_num_layers = math.log(spatial_downsample, 4)
convnet_num_layers_is_int = (
convnet_num_layers == np.round(convnet_num_layers))
if not convnet_num_layers_is_int or temporal_downsample != 1:
raise ValueError('Only powers of 4 expected for spatial '
'and 1 expected for temporal '
'downsampling with conv.')
self.convnet = Conv2DDownsample(
num_layers=int(convnet_num_layers),
num_channels=num_channels,
use_batchnorm=conv2d_use_batchnorm)
elif self._prep_type == 'conv1x1':
assert temporal_downsample == 1, 'conv1x1 does not downsample in time.'
self.convnet_1x1 = hk.Conv2D(
num_channels, kernel_shape=[1, 1],
# spatial_downsample is unconstrained for 1x1 convolutions.
stride=[spatial_downsample, spatial_downsample])
# Partially construct the positional encoding function.
# We fully construct it when we know the input size.
self._positional_encoding_ctor = functools.partial(
position_encoding.build_position_encoding,
position_encoding_type=position_encoding_type,
**position_encoding_kwargs)
# Stack MLPs to get a deeper positional embedding.
self._n_extra_pos_mlp = n_extra_pos_mlp
def _build_network_inputs(
self, inputs: jnp.ndarray, pos: jnp.ndarray,
network_input_is_1d: bool = True) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Construct the final input, including position encoding."""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
# Reshape input features to a 1D index dimension if necessary.
if len(inputs.shape) > 3 and network_input_is_1d:
inputs = jnp.reshape(
inputs, [batch_size, np.prod(index_dims), -1])
# Construct the position encoding.
pos_enc = self._positional_encoding_ctor(
index_dims=index_dims)(batch_size=batch_size, pos=pos)
for i in range(0, self._n_extra_pos_mlp):
pos_enc += hk.Linear(pos_enc.shape[-1])(pos_enc)
if i < (self._n_extra_pos_mlp-1):
pos_enc = jax.nn.relu(pos_enc)
if not network_input_is_1d:
# Reshape pos to match the input feature shape
# if the network takes non-1D inputs
sh = inputs.shape
pos_enc = jnp.reshape(pos_enc, list(sh)[:-1]+[-1])
if self._concat_or_add_pos == 'concat':
inputs_with_pos = jnp.concatenate([inputs, pos_enc], axis=-1)
elif self._concat_or_add_pos == 'add':
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def __call__(
self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
network_input_is_1d: bool = True) -> PreprocessorOutputT:
if self._prep_type == 'conv':
# Convnet image featurization.
# Downsamples spatially by a factor of 4
conv = self.convnet
if len(inputs.shape) == 5:
conv = hk.BatchApply(conv)
inputs = conv(inputs, is_training=is_training)
elif self._prep_type == 'conv1x1':
# maps inputs to 64d
conv = self.convnet_1x1
if len(inputs.shape) == 5:
conv = hk.BatchApply(conv)
inputs = conv(inputs)
elif self._prep_type == 'patches':
# Space2depth featurization.
# Video: B x T x H x W x C
inputs = space_to_depth(
inputs,
temporal_block_size=self._temporal_downsample,
spatial_block_size=self._spatial_downsample)
if inputs.ndim == 5 and inputs.shape[1] == 1:
# for flow
inputs = jnp.squeeze(inputs, axis=1)
if self._conv_after_patching:
inputs = hk.Linear(self._num_channels, name='patches_linear')(inputs)
elif self._prep_type == 'pixels':
# if requested, downsamples in the crudest way
if inputs.ndim == 4:
inputs = inputs[:,
::self._spatial_downsample, ::self._spatial_downsample]
elif inputs.ndim == 5:
inputs = inputs[:, ::self._temporal_downsample,
::self._spatial_downsample, ::self._spatial_downsample]
else:
raise ValueError('Unsupported data format for pixels.')
inputs, inputs_without_pos = self._build_network_inputs(
inputs, pos, network_input_is_1d)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class ImagePostprocessor(hk.Module):
"""Image postprocessing for Perceiver."""
def __init__(
self,
postproc_type: str = 'pixels',
spatial_upsample: int = 1,
temporal_upsample: int = 1,
n_outputs: int = -1, # only relevant for 'conv1x1', 'conv', and 'raft'
input_reshape_size: Optional[Sequence[int]] = None,
name: Optional[str] = None):
super().__init__(name=name)
if postproc_type not in ('conv', 'patches', 'pixels', 'raft', 'conv1x1'):
raise ValueError('Invalid postproc_type!')
# Architecture parameters:
self._postproc_type = postproc_type
self._temporal_upsample = temporal_upsample
self._spatial_upsample = spatial_upsample
self._input_reshape_size = input_reshape_size
if self._postproc_type == 'pixels':
# No postprocessing.
if self._temporal_upsample != 1 or self._spatial_upsample != 1:
raise ValueError('Pixels postprocessing should not currently upsample.')
elif self._postproc_type == 'conv1x1':
assert self._temporal_upsample == 1, 'conv1x1 does not upsample in time.'
if n_outputs == -1:
raise ValueError('Expected value for n_outputs')
self.conv1x1 = hk.Conv2D(
n_outputs, kernel_shape=[1, 1],
# spatial_downsample is unconstrained for 1x1 convolutions.
stride=[self._spatial_upsample, self._spatial_upsample])
elif self._postproc_type == 'conv':
if n_outputs == -1:
raise ValueError('Expected value for n_outputs')
if self._temporal_upsample != 1:
def int_log2(x):
return int(np.round(np.log(x) / np.log(2)))
self.convnet = Conv3DUpsample(
n_outputs, int_log2(temporal_upsample), int_log2(spatial_upsample))
else:
self.convnet = Conv2DUpsample(n_outputs)
def __call__(
self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> jnp.ndarray:
if self._input_reshape_size is not None:
inputs = jnp.reshape(
inputs,
[inputs.shape[0]] + list(self._input_reshape_size)
+ [inputs.shape[-1]])
if self._postproc_type == 'conv' or self._postproc_type == 'raft':
# Convnet image featurization.
conv = self.convnet
if len(inputs.shape) == 5 and self._temporal_upsample == 1:
conv = hk.BatchApply(conv)
inputs = conv(inputs, is_training=is_training)
elif self._postproc_type == 'conv1x1':
inputs = self.conv1x1(inputs)
elif self._postproc_type == 'patches':
inputs = reverse_space_to_depth(
inputs, self._temporal_upsample, self._spatial_upsample)
return inputs
class OneHotPreprocessor(hk.Module):
"""One-hot preprocessor for Perceiver Encoder."""
def __init__(self, name: Optional[str] = None):
super().__init__(name=name)
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
network_input_is_1d: bool = True) -> PreprocessorOutputT:
# Add a dummy index dimension.
inputs = inputs[:, None, :]
# No position encodings, so the 1st (input) and 3rd (inputs_without_pos)
# outputs are identical.
return inputs, None, inputs
class AudioPreprocessor(hk.Module):
"""Audio preprocessing for Perceiver Encoder."""
def __init__(
self,
prep_type: str = 'patches',
samples_per_patch: int = 96,
position_encoding_type: str = 'fourier',
n_extra_pos_mlp: int = 0,
concat_or_add_pos: str = 'concat',
name: Optional[str] = None,
**position_encoding_kwargs):
super().__init__(name=name)
if prep_type not in ('patches',):
raise ValueError('Invalid prep_type!')
if concat_or_add_pos not in ['concat', 'add']:
raise ValueError(
f'Invalid value {concat_or_add_pos} for concat_or_add_pos.')
self._samples_per_patch = samples_per_patch
self._concat_or_add_pos = concat_or_add_pos
# Partially construct the positional encoding function.
# We fully construct it when we know the input size.
self._positional_encoding_ctor = functools.partial(
position_encoding.build_position_encoding,
position_encoding_type=position_encoding_type,
**position_encoding_kwargs)
# for deeper positional embeddings
self._n_extra_pos_mlp = n_extra_pos_mlp
def _build_network_inputs(
self, inputs: jnp.ndarray,
pos: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Construct the final input, including position encoding."""
batch_size = inputs.shape[0]
index_dims = inputs.shape[1:-1]
# Construct the position encoding.
pos_enc = self._positional_encoding_ctor(
index_dims=index_dims)(batch_size=batch_size, pos=pos)
for i in range(0, self._n_extra_pos_mlp):
pos_enc += hk.Linear(pos_enc.shape[-1])(pos_enc)
if i < (self._n_extra_pos_mlp-1):
pos_enc = jax.nn.relu(pos_enc)
if self._concat_or_add_pos == 'concat':
inputs_with_pos = jnp.concatenate([inputs, pos_enc], axis=-1)
elif self._concat_or_add_pos == 'add':
inputs_with_pos = inputs + pos_enc
return inputs_with_pos, inputs
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
network_input_is_1d: bool = True) -> PreprocessorOutputT:
inputs = jnp.reshape(inputs, [inputs.shape[0], -1,
self._samples_per_patch])
inputs, inputs_without_pos = self._build_network_inputs(inputs, pos)
modality_sizes = None # Size for each modality, only needed for multimodal
return inputs, modality_sizes, inputs_without_pos
class AudioPostprocessor(hk.Module):
"""Audio postprocessing for Perceiver."""
def __init__(
self,
postproc_type: str = 'patches', # 'conv', 'patches', 'pixels'
samples_per_patch: int = 96,
name: Optional[str] = None):
super().__init__(name=name)
if postproc_type not in ('patches',):
raise ValueError('Invalid postproc_type!')
self._samples_per_patch = samples_per_patch
# Architecture parameters:
self._postproc_type = postproc_type
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> jnp.ndarray:
out = hk.Linear(self._samples_per_patch)(inputs)
return jnp.reshape(out, [inputs.shape[0], -1])
class IdentityPostprocessor(hk.Module):
"""Passes through the inputs unchanged."""
def __init__(self, name: Optional[str] = None):
super().__init__(name=name)
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> jnp.ndarray:
return inputs
def restructure(modality_sizes: ModalitySizeT,
inputs: jnp.ndarray) -> Mapping[str, jnp.ndarray]:
"""Partitions a [B, N, C] tensor into tensors for each modality.
Args:
modality_sizes: dict specifying the size of the modality
inputs: input tensor
Returns:
dict mapping name of modality to its associated tensor.
"""
outputs = {}
index = 0
# Apply a predictable ordering to the modalities
for modality in sorted(modality_sizes.keys()):
size = modality_sizes[modality]
inp = inputs[:, index:index + size]
index += size
outputs[modality] = inp
return outputs
class MultimodalPreprocessor(hk.Module):
"""Multimodal preprocessing for Perceiver Encoder.
Inputs for each modality is preprocessed then padded with trainable position
embeddings to have the same number of channels.
"""
def __init__(
self,
modalities: Mapping[str, PreprocessorT],
mask_probs: Optional[Mapping[str, float]] = None,
min_padding_size: int = 2,
name: Optional[str] = None):
"""Constructor.
Args:
modalities: dict mapping modality name to preprocessor
mask_probs: dict mapping modality name to masking probability of that
modality
min_padding_size: the minimum padding size for all modalities.
The final output will have num_channels equal to the maximum channels
across all modalities plus min_padding_size.
name: name of module
"""
super().__init__(name=name)
self._modalities = modalities
self._min_padding_size = min_padding_size
self._mask_probs = mask_probs
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
network_input_is_1d: bool = True) -> PreprocessorOutputT:
outputs = {}
inputs_without_pos = {}
for modality, preprocessor in self._modalities.items():
outputs[modality], _, inputs_without_pos[modality] = preprocessor(
inputs[modality], is_training=is_training, pos=pos,
network_input_is_1d=network_input_is_1d)
common_channel_size = (max(o.shape[2] for o in outputs.values())
+ self._min_padding_size)
padded = {}
modality_sizes = {}
for modality, output in outputs.items():
pos_enc = position_encoding.TrainablePositionEncoding(
1, num_channels=common_channel_size-output.shape[2],
init_scale=0.02, name=f'{modality}_padding')
padding = jnp.broadcast_to(
pos_enc(batch_size=output.shape[0]),
[output.shape[0], output.shape[1],
common_channel_size-output.shape[2]])
output_padded = jnp.concatenate([output, padding], axis=2)
if self._mask_probs is not None:
# Randomly mask out each token corresponding to this modality
mask_token = position_encoding.TrainablePositionEncoding(
1, num_channels=output_padded.shape[2],
init_scale=0.02, name=f'{modality}_mask_token')(output.shape[0])
mask_prob = self._mask_probs[modality]
rng = hk.next_rng_key()
mask = jax.random.bernoulli(rng, mask_prob,
shape=[output.shape[0], output.shape[1]])
mask = jnp.expand_dims(mask, axis=2)
output_padded = (1 - mask) * output_padded + mask * mask_token
padded[modality] = output_padded
modality_sizes[modality] = output_padded.shape[1]
# Apply a predictable ordering to the modalities
padded_ls = [padded[k] for k in sorted(padded.keys())]
return (jnp.concatenate(padded_ls, axis=1), # pytype: disable=bad-return-type # jax-ndarray
modality_sizes,
inputs_without_pos)
class MultimodalPostprocessor(hk.Module):
"""Multimodal postprocessing for Perceiver."""
def __init__(
self,
modalities: Mapping[str, PostprocessorT],
input_is_dict: bool = False,
name: Optional[str] = None):
"""Constructor.
Args:
modalities: dict mapping modality name to post processor for that modality
input_is_dict: If True, input is assumed to be dictionary structured,
and outputs keep the same dictionary shape. If False, input is a tensor
which is sliced up during postprocessing by `modality_sizes`.
name: name of the module
"""
super().__init__(name=name)
self._modalities = modalities
self._input_is_dict = input_is_dict
def __call__(
self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> Mapping[str,
jnp.ndarray]:
if not self._input_is_dict:
# Slice up modalities by their sizes.
assert modality_sizes is not None
inputs = restructure(modality_sizes=modality_sizes, inputs=inputs)
outputs = {modality: postprocessor(
inputs[modality], is_training=is_training, pos=pos, modality_sizes=None)
for modality, postprocessor in self._modalities.items()}
return outputs
class ClassificationPostprocessor(hk.Module):
"""Classification postprocessing for Perceiver."""
def __init__(
self,
num_classes: int,
name: Optional[str] = None):
super().__init__(name=name)
self._num_classes = num_classes
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> jnp.ndarray:
logits = hk.Linear(self._num_classes)(inputs)
return logits[:, 0, :]
class ProjectionPostprocessor(hk.Module):
"""Projection postprocessing for Perceiver."""
def __init__(
self,
num_outputs: int,
name: Optional[str] = None):
super().__init__(name=name)
self._num_outputs = num_outputs
def __call__(self, inputs: jnp.ndarray, *,
is_training: bool,
pos: Optional[jnp.ndarray] = None,
modality_sizes: Optional[ModalitySizeT] = None) -> jnp.ndarray:
logits = hk.Linear(self._num_outputs)(inputs)
return logits
class EmbeddingDecoder(hk.Module):
"""Haiku module to decode embeddings."""
def __init__(self, embedding_matrix: jnp.ndarray, name='embedding_decoder'):
"""Constructs the module.
Args:
embedding_matrix: Array of shape [vocab_size, d_model].
name: Name of the module.
"""
super().__init__(name=name)
self._embedding_matrix = embedding_matrix
self._vocab_size, self._d_model = embedding_matrix.shape
def __call__(self, embeddings: jnp.ndarray) -> jnp.ndarray:
batch_size, seq_len, _ = embeddings.shape
output = jnp.matmul(
embeddings.reshape([-1, self._d_model]), # Flatten batch dim
jnp.transpose(self._embedding_matrix))
bias = hk.get_parameter('bias', shape=[self._vocab_size], init=jnp.zeros)
output = output + bias
return output.reshape([batch_size, seq_len, self._vocab_size])