Files
deepmind-research/mmv/models/tsm_resnet_test.py
Louise Deason c146166d4b Initial release of "mmv".
PiperOrigin-RevId: 346305536
2020-12-08 13:57:53 +00:00

66 lines
2.0 KiB
Python

# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for TSM ResNet model."""
from absl.testing import absltest
from absl.testing import parameterized
import haiku as hk
import jax
import jax.numpy as jnp
from mmv.models import tsm_resnet
class TSMResNetTest(parameterized.TestCase):
@parameterized.parameters(
('tsm_resnet_stem', (2 * 32, 56, 56, 64)),
('tsm_resnet_unit_0', (2 * 32, 56, 56, 256)),
('tsm_resnet_unit_1', (2 * 32, 28, 28, 512)),
('tsm_resnet_unit_2', (2 * 32, 14, 14, 1024)),
('tsm_resnet_unit_3', (2 * 32, 7, 7, 2048)),
('last_conv', (2 * 32, 7, 7, 2048)),
('Embeddings', (2, 2048)),
)
def test_output_dimension(self, final_endpoint, expected_shape):
input_shape = (2, 32, 224, 224, 3)
def f():
data = jnp.zeros(input_shape)
net = tsm_resnet.TSMResNetV2()
return net(data, final_endpoint=final_endpoint)
init_fn, apply_fn = hk.transform(f)
out = apply_fn(init_fn(jax.random.PRNGKey(42)), None)
self.assertEqual(out.shape, expected_shape)
def test_tpu_mode(self):
input_shape = (32 * 2, 224, 224, 3)
def f():
data = jnp.zeros(input_shape)
net = tsm_resnet.TSMResNetV2(num_frames=32)
return net(data, final_endpoint='Embeddings')
init_fn, apply_fn = hk.transform(f)
out = apply_fn(init_fn(jax.random.PRNGKey(42)), None)
self.assertEqual(out.shape, (2, 2048))
if __name__ == '__main__':
absltest.main()