mirror of
https://github.com/google-deepmind/deepmind-research.git
synced 2026-02-07 04:22:09 +08:00
58 lines
2.0 KiB
Bash
Executable File
58 lines
2.0 KiB
Bash
Executable File
#!/bin/bash
|
|
# Copyright 2020 Deepmind Technologies Limited.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Fail on any error.
|
|
set -e
|
|
|
|
# Display commands being run.
|
|
set -x
|
|
|
|
TMP_DIR=`mktemp -d`
|
|
|
|
virtualenv --python=python3.6 "${TMP_DIR}/learning_to_simulate"
|
|
source "${TMP_DIR}/learning_to_simulate/bin/activate"
|
|
|
|
# Install dependencies.
|
|
pip install --upgrade -r learning_to_simulate/requirements.txt
|
|
|
|
# Run the simple demo with dummy inputs.
|
|
python -m learning_to_simulate.model_demo
|
|
|
|
# Run some training and evaluation in one of the dataset samples.
|
|
|
|
# Download a sample of a dataset.
|
|
DATASET_NAME="WaterDropSample"
|
|
|
|
bash ./learning_to_simulate/download_dataset.sh ${DATASET_NAME} "${TMP_DIR}/datasets"
|
|
|
|
# Train for a few steps.
|
|
DATA_PATH="${TMP_DIR}/datasets/${DATASET_NAME}"
|
|
MODEL_PATH="${TMP_DIR}/models/${DATASET_NAME}"
|
|
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --num_steps=10
|
|
|
|
# Evaluate on validation split.
|
|
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --mode="eval" --eval_split="valid"
|
|
|
|
# Generate test rollouts.
|
|
ROLLOUT_PATH="${TMP_DIR}/rollouts/${DATASET_NAME}"
|
|
mkdir -p ${ROLLOUT_PATH}
|
|
python -m learning_to_simulate.train --data_path=${DATA_PATH} --model_path=${MODEL_PATH} --mode="eval_rollout" --output_path=${ROLLOUT_PATH}
|
|
|
|
# Plot the first rollout.
|
|
python -m learning_to_simulate.render_rollout --rollout_path="${ROLLOUT_PATH}/rollout_test_0.pkl" --block_on_show=False
|
|
|
|
# Clean up.
|
|
rm -r ${TMP_DIR}
|