# Copyright 2019 Deepmind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Applies a graph-based network to predict particle mobilities in glasses.""" import os from absl import app from absl import flags from glassy_dynamics import train FLAGS = flags.FLAGS flags.DEFINE_string( 'data_directory', '', 'Directory which contains the train or test datasets.') flags.DEFINE_integer( 'time_index', 9, 'The time index of the target mobilities.') flags.DEFINE_integer( 'max_files_to_load', None, 'The maximum number of files to load.') flags.DEFINE_string( 'checkpoint_path', 'checkpoints/t044_s09.ckpt', 'Path used to load the model.') def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') file_pattern = os.path.join(FLAGS.data_directory, 'aggregated*') train.apply_model( checkpoint_path=FLAGS.checkpoint_path, file_pattern=file_pattern, max_files_to_load=FLAGS.max_files_to_load, time_index=FLAGS.time_index) if __name__ == '__main__': app.run(main)