Files
ardupilot/libraries/AC_PID/AC_PID_Basic.cpp
2025-05-25 10:57:53 +10:00

184 lines
6.4 KiB
C++

/// @file AC_PID_Basic.cpp
/// @brief Lightweight PID controller with error and derivative filtering, integrator limit, and EEPROM gain storage.
#include <AP_Math/AP_Math.h>
#include <AP_InternalError/AP_InternalError.h>
#include "AC_PID_Basic.h"
#define AC_PID_Basic_FILT_E_HZ_MIN 0.01f // minimum input filter frequency
#define AC_PID_Basic_FILT_D_HZ_MIN 0.005f // minimum input filter frequency
const AP_Param::GroupInfo AC_PID_Basic::var_info[] = {
// @Param: P
// @DisplayName: PID Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("P", 0, AC_PID_Basic, _kp, default_kp),
// @Param: I
// @DisplayName: PID Integral Gain
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("I", 1, AC_PID_Basic, _ki, default_ki),
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("IMAX", 2, AC_PID_Basic, _kimax, default_kimax),
// @Param: FLTE
// @DisplayName: PID Error filter frequency in Hz
// @Description: Low-pass filter frequency applied to the error (Hz)
// @Units: Hz
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTE", 3, AC_PID_Basic, _filt_E_hz, default_filt_E_hz),
// @Param: D
// @DisplayName: PID Derivative Gain
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("D", 4, AC_PID_Basic, _kd, default_kd),
// @Param: FLTD
// @DisplayName: D term filter frequency in Hz
// @Description: Low-pass filter frequency applied to the derivative (Hz)
// @Units: Hz
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTD", 5, AC_PID_Basic, _filt_D_hz, default_filt_D_hz),
// @Param: FF
// @DisplayName: PID Feed Forward Gain
// @Description: FF Gain which produces an output that is proportional to the magnitude of the target
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FF", 6, AC_PID_Basic, _kff, default_kff),
AP_GROUPEND
};
// Constructor
AC_PID_Basic::AC_PID_Basic(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz) :
default_kp(initial_p),
default_ki(initial_i),
default_kd(initial_d),
default_kff(initial_ff),
default_kimax(initial_imax),
default_filt_E_hz(initial_filt_E_hz),
default_filt_D_hz(initial_filt_D_hz)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
// reset input filter to first value received
_reset_filter = true;
}
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit)
{
return update_all(target, measurement, dt, (limit && is_negative(_integrator)), (limit && is_positive(_integrator)));
}
// Computes the PID output using a target and measurement input.
// Applies filters to the error and derivative, then updates the integrator.
// If `limit` is true, the integrator is allowed to shrink but not grow.
float AC_PID_Basic::update_all(float target, float measurement, float dt, bool limit_neg, bool limit_pos)
{
// Return zero if inputs are invalid (NaN or infinite)
if (!isfinite(target) || isnan(target) ||
!isfinite(measurement) || isnan(measurement)) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
return 0.0f;
}
_target = target;
// Reset filter state to match current inputs (on first run or after reset)
if (_reset_filter) {
// Reset filters to match the current inputs
_reset_filter = false;
_error = _target - measurement;
_derivative = 0.0f;
} else {
float error_last = _error;
_error += get_filt_E_alpha(dt) * ((_target - measurement) - _error);
// Compute and low-pass filter the error derivative (D term)
if (is_positive(dt)) {
float derivative = (_error - error_last) / dt;
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
}
}
// update I term
update_i(dt, limit_neg, limit_pos);
const float P_out = _error * _kp;
const float D_out = _derivative * _kd;
_pid_info.target = _target;
_pid_info.actual = measurement;
_pid_info.error = _error;
_pid_info.P = _error * _kp;
_pid_info.I = _integrator;
_pid_info.D = _derivative * _kd;
_pid_info.FF = _target * _kff;
return P_out + _integrator + D_out + _target * _kff;
}
// Updates the integrator using current error and dt.
// If `limit_neg` is true, integrator may only increase.
// If `limit_pos` is true, integrator may only decrease.
void AC_PID_Basic::update_i(float dt, bool limit_neg, bool limit_pos)
{
if (!is_zero(_ki)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!((limit_neg && is_negative(_error)) || (limit_pos && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
_integrator = 0.0f;
}
}
void AC_PID_Basic::reset_I()
{
_integrator = 0.0;
}
// Saves controller configuration from EEPROM, including gains and filter frequencies. (not used)
void AC_PID_Basic::save_gains()
{
_kp.save();
_ki.save();
_kd.save();
_kff.save();
_kimax.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
// Returns alpha value for the error low-pass filter (based on filter frequency and dt)
float AC_PID_Basic::get_filt_E_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
// Returns alpha value for the derivative low-pass filter (based on filter frequency and dt)
float AC_PID_Basic::get_filt_D_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
// Sets integrator based on target, measurement, and desired total PID output.
void AC_PID_Basic::set_integrator(float target, float measurement, float i)
{
set_integrator(target - measurement, i);
}
// Sets integrator using error and desired total output.
void AC_PID_Basic::set_integrator(float error, float i)
{
set_integrator(i - error * _kp);
}
// Sets the integrator directly.
void AC_PID_Basic::set_integrator(float i)
{
_integrator = constrain_float(i, -_kimax, _kimax);
}