Files
ardupilot/libraries/AP_Landing/AP_Landing_Deepstall.cpp
Peter Barker fbf1809b5f AP_Landing: rename airspeed methods on AHRS to include EAS or TAS
mixing these up has caused confusion in the past.

"estimate" could also be confused as to mean "synthetic", when it will often come from a sensor.
2025-11-17 18:46:52 -06:00

668 lines
26 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Landing_Deepstall.cpp - Landing logic handler for ArduPlane for deepstall landings
*/
#include "AP_Landing_config.h"
#if HAL_LANDING_DEEPSTALL_ENABLED
#include "AP_Landing.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_HAL/AP_HAL.h>
#include <SRV_Channel/SRV_Channel.h>
#include <AP_Common/Location.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Logger/AP_Logger.h>
// table of user settable parameters for deepstall
const AP_Param::GroupInfo AP_Landing_Deepstall::var_info[] = {
// @Param: V_FWD
// @DisplayName: Deepstall forward velocity
// @Description: The forward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_FWD", 1, AP_Landing_Deepstall, forward_speed, 1),
// @Param: SLOPE_A
// @DisplayName: Deepstall slope a
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_A", 2, AP_Landing_Deepstall, slope_a, 1),
// @Param: SLOPE_B
// @DisplayName: Deepstall slope b
// @Description: The a component of distance = a*wind + b
// @User: Advanced
AP_GROUPINFO("SLOPE_B", 3, AP_Landing_Deepstall, slope_b, 1),
// @Param: APP_EXT
// @DisplayName: Deepstall approach extension
// @Description: The horizontal distance from which the aircraft will approach before the stall
// @Range: 10 200
// @Units: m
// @User: Advanced
AP_GROUPINFO("APP_EXT", 4, AP_Landing_Deepstall, approach_extension, 50),
// @Param: V_DWN
// @DisplayName: Deepstall velocity down
// @Description: The downward velocity of the aircraft while stalled
// @Range: 0 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("V_DWN", 5, AP_Landing_Deepstall, down_speed, 2),
// @Param: SLEW_SPD
// @DisplayName: Deepstall slew speed
// @Description: The speed at which the elevator slews to deepstall
// @Range: 0 2
// @Units: s
// @User: Advanced
AP_GROUPINFO("SLEW_SPD", 6, AP_Landing_Deepstall, slew_speed, 0.5),
// @Param: ELEV_PWM
// @DisplayName: Deepstall elevator PWM
// @Description: The PWM value in microseconds for the elevator at full deflection in deepstall
// @Range: 900 2100
// @Units: PWM
// @User: Advanced
AP_GROUPINFO("ELEV_PWM", 7, AP_Landing_Deepstall, elevator_pwm, 1500),
// @Param: ARSP_MAX
// @DisplayName: Deepstall enabled airspeed
// @Description: The maximum aispeed where the deepstall steering controller is allowed to have control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MAX", 8, AP_Landing_Deepstall, handoff_airspeed, 15.0),
// @Param: ARSP_MIN
// @DisplayName: Deepstall minimum derating airspeed
// @Description: Deepstall lowest airspeed where the deepstall controller isn't allowed full control
// @Range: 5 20
// @Units: m/s
// @User: Advanced
AP_GROUPINFO("ARSP_MIN", 9, AP_Landing_Deepstall, handoff_lower_limit_airspeed, 10.0),
// @Param: L1
// @DisplayName: Deepstall L1 period
// @Description: Deepstall L1 navigational controller period
// @Range: 5 50
// @Units: s
// @User: Advanced
AP_GROUPINFO("L1", 10, AP_Landing_Deepstall, L1_period, 30.0),
// @Param: L1_I
// @DisplayName: Deepstall L1 I gain
// @Description: Deepstall L1 integratior gain
// @Range: 0 1
// @User: Advanced
AP_GROUPINFO("L1_I", 11, AP_Landing_Deepstall, L1_i, 0),
// @Param: YAW_LIM
// @DisplayName: Deepstall yaw rate limit
// @Description: The yaw rate limit while navigating in deepstall
// @Range: 0 90
// @Units: deg/s
// @User: Advanced
AP_GROUPINFO("YAW_LIM", 12, AP_Landing_Deepstall, yaw_rate_limit, 10),
// @Param: L1_TCON
// @DisplayName: Deepstall L1 time constant
// @Description: Time constant for deepstall L1 control
// @Range: 0 1
// @Units: s
// @User: Advanced
AP_GROUPINFO("L1_TCON", 13, AP_Landing_Deepstall, time_constant, 0.4),
// @Param: P
// @DisplayName: P gain
// @Description: P gain
// @User: Standard
// @Param: I
// @DisplayName: I gain
// @Description: I gain
// @User: Standard
// @Param: D
// @DisplayName: D gain
// @Description: D gain
// @User: Standard
// @Param: IMAX
// @DisplayName: IMax
// @Description: Maximum integrator value
// @User: Standard
AP_SUBGROUPINFO(ds_PID, "", 14, AP_Landing_Deepstall, PID),
// @Param: ABORTALT
// @DisplayName: Deepstall minimum abort altitude
// @Description: The minimum altitude which the aircraft must be above to abort a deepstall landing
// @Range: 0 50
// @Units: m
// @User: Advanced
AP_GROUPINFO("ABORTALT", 15, AP_Landing_Deepstall, min_abort_alt, 0.0f),
// @Param: AIL_SCL
// @DisplayName: Aileron landing gain scalaing
// @Description: A scalar to reduce or increase the aileron control
// @Range: 0 2.0
// @User: Advanced
AP_GROUPINFO("AIL_SCL", 16, AP_Landing_Deepstall, aileron_scalar, 1.0f),
AP_GROUPEND
};
// if DEBUG_PRINTS is defined statustexts will be sent to the GCS for debug purposes
// #define DEBUG_PRINTS
void AP_Landing_Deepstall::do_land(const AP_Mission::Mission_Command& cmd, const float relative_altitude)
{
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
ds_PID.reset();
L1_xtrack_i = 0.0f;
hold_level = false; // come out of yaw lock
// load the landing point in, the rest of path building is deferred for a better wind estimate
memcpy(&landing_point, &cmd.content.location, sizeof(Location));
if (!landing_point.relative_alt && !landing_point.terrain_alt) {
approach_alt_offset = cmd.p1;
landing_point.offset_up_m(approach_alt_offset);
} else {
approach_alt_offset = 0.0f;
}
}
// currently identical to the slope aborts
void AP_Landing_Deepstall::verify_abort_landing(const Location &prev_WP_loc, Location &next_WP_loc, bool &throttle_suppressed)
{
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
// the altitude has been reached, restart the landing sequence
throttle_suppressed = false;
landing.nav_controller->update_heading_hold(prev_WP_loc.get_bearing_to(next_WP_loc));
}
/*
update navigation for landing
*/
bool AP_Landing_Deepstall::verify_land(const Location &prev_WP_loc, Location &next_WP_loc, const Location &current_loc,
const float height, const float sink_rate, const float wp_proportion, const uint32_t last_flying_ms,
const bool is_armed, const bool is_flying, const bool rangefinder_state_in_range)
{
switch (stage) {
case DEEPSTALL_STAGE_FLY_TO_LANDING:
if (current_loc.get_distance(landing_point) > abs(2 * landing.aparm.loiter_radius)) {
landing.nav_controller->update_waypoint(current_loc, landing_point);
return false;
}
stage = DEEPSTALL_STAGE_ESTIMATE_WIND;
loiter_sum_cd = 0; // reset the loiter counter
FALLTHROUGH;
case DEEPSTALL_STAGE_ESTIMATE_WIND:
{
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
if (!landing.nav_controller->reached_loiter_target() || (fabsf(height - approach_alt_offset) > DEEPSTALL_LOITER_ALT_TOLERANCE)) {
// wait until the altitude is correct before considering a breakout
return false;
}
// only count loiter progress when within the target altitude
int32_t target_bearing = landing.nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - last_target_bearing);
delta *= (landing_point.loiter_ccw ? -1 : 1);
if (delta > 0) { // only accumulate turns in the correct direction
loiter_sum_cd += delta;
}
last_target_bearing = target_bearing;
if (loiter_sum_cd < 36000) {
// wait until we've done at least one complete loiter at the correct altitude
return false;
}
stage = DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT;
loiter_sum_cd = 0; // reset the loiter counter
FALLTHROUGH;
}
case DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT:
// rebuild the approach path if we have done less then a full circle to allow it to be
// more into the wind as the estimator continues to refine itself, and allow better
// compensation on windy days. This is limited to a single full circle though, as on
// a no wind day you could be in this loop forever otherwise.
if (loiter_sum_cd < 36000) {
build_approach_path(false);
}
if (!verify_breakout(current_loc, arc_entry, height - approach_alt_offset)) {
int32_t target_bearing = landing.nav_controller->target_bearing_cd();
int32_t delta = wrap_180_cd(target_bearing - last_target_bearing);
if (delta > 0) { // only accumulate turns in the correct direction
loiter_sum_cd += delta;
}
last_target_bearing = target_bearing;
landing.nav_controller->update_loiter(landing_point, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
return false;
}
stage = DEEPSTALL_STAGE_FLY_TO_ARC;
memcpy(&breakout_location, &current_loc, sizeof(Location));
FALLTHROUGH;
case DEEPSTALL_STAGE_FLY_TO_ARC:
if (current_loc.get_distance(arc_entry) > 2 * landing.aparm.loiter_radius) {
landing.nav_controller->update_waypoint(breakout_location, arc_entry);
return false;
}
stage = DEEPSTALL_STAGE_ARC;
FALLTHROUGH;
case DEEPSTALL_STAGE_ARC:
{
Vector2f groundspeed = landing.ahrs.groundspeed_vector();
if (!landing.nav_controller->reached_loiter_target() ||
(fabsf(wrap_180(target_heading_deg -
degrees(atan2f(-groundspeed.y, -groundspeed.x) + M_PI))) >= 10.0f)) {
landing.nav_controller->update_loiter(arc, landing.aparm.loiter_radius, landing_point.loiter_ccw ? -1 : 1);
return false;
}
stage = DEEPSTALL_STAGE_APPROACH;
}
FALLTHROUGH;
case DEEPSTALL_STAGE_APPROACH:
{
Location entry_point;
landing.nav_controller->update_waypoint(arc_exit, extended_approach);
float height_above_target;
if (is_zero(approach_alt_offset)) {
landing.ahrs.get_relative_position_D_home(height_above_target);
height_above_target = -height_above_target;
} else {
Location position;
if (landing.ahrs.get_location(position)) {
height_above_target = (position.alt - landing_point.alt + approach_alt_offset * 100) * 1e-2f;
} else {
height_above_target = approach_alt_offset;
}
}
const float travel_distance = predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, false);
memcpy(&entry_point, &landing_point, sizeof(Location));
entry_point.offset_bearing(target_heading_deg + 180.0, travel_distance);
if (!current_loc.past_interval_finish_line(arc_exit, entry_point)) {
if (current_loc.past_interval_finish_line(arc_exit, extended_approach)) {
// this should never happen, but prevent against an indefinite fly away
stage = DEEPSTALL_STAGE_FLY_TO_LANDING;
}
return false;
}
predict_travel_distance(landing.ahrs.wind_estimate(), height_above_target, true);
stage = DEEPSTALL_STAGE_LAND;
stall_entry_time = AP_HAL::millis();
const SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator);
if (elevator != nullptr) {
// take the last used elevator angle as the starting deflection
// don't worry about bailing here if the elevator channel can't be found
// that will be handled within override_servos
initial_elevator_pwm = elevator->get_output_pwm();
}
}
FALLTHROUGH;
case DEEPSTALL_STAGE_LAND:
// while in deepstall the only thing verify needs to keep the extended approach point sufficently far away
landing.nav_controller->update_waypoint(current_loc, extended_approach);
landing.disarm_if_autoland_complete_fn();
return false;
default:
return true;
}
}
bool AP_Landing_Deepstall::override_servos(void)
{
if (stage != DEEPSTALL_STAGE_LAND) {
return false;
}
SRV_Channel* elevator = SRV_Channels::get_channel_for(SRV_Channel::k_elevator);
if (elevator == nullptr) {
// deepstalls are impossible without these channels, abort the process
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Deepstall: Unable to find the elevator channels");
request_go_around();
return false;
}
// calculate the progress on slewing the elevator
float slew_progress = 1.0f;
if (slew_speed > 0) {
slew_progress = (AP_HAL::millis() - stall_entry_time) / (100.0f * slew_speed);
}
// mix the elevator to the correct value
elevator->set_output_pwm(linear_interpolate(initial_elevator_pwm, elevator_pwm,
slew_progress, 0.0f, 1.0f));
// use the current airspeed to dictate the travel limits
float airspeed;
if (!landing.ahrs.airspeed_EAS(airspeed)) {
airspeed = 0; // safely forces control to the deepstall steering since we don't have an estimate
}
// only allow the deepstall steering controller to run below the handoff airspeed
if (slew_progress >= 1.0f || airspeed <= handoff_airspeed) {
// run the steering conntroller
float pid = update_steering();
float travel_limit = constrain_float((handoff_airspeed - airspeed) /
(handoff_airspeed - handoff_lower_limit_airspeed) *
0.5f + 0.5f,
0.5f, 1.0f);
float output = constrain_float(pid, -travel_limit, travel_limit);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, output*4500*aileron_scalar);
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, output*4500);
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0); // this will normally be managed as part of landing,
// but termination needs to set throttle control here
}
// hand off rudder control to deepstall controlled
return true;
}
bool AP_Landing_Deepstall::request_go_around(void)
{
float current_altitude_d;
landing.ahrs.get_relative_position_D_home(current_altitude_d);
if (is_zero(min_abort_alt) || -current_altitude_d > min_abort_alt) {
landing.flags.commanded_go_around = true;
return true;
} else {
return false;
}
}
bool AP_Landing_Deepstall::is_throttle_suppressed(void) const
{
return stage == DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::is_flying_forward(void) const
{
return stage != DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::is_on_approach(void) const
{
return stage == DEEPSTALL_STAGE_LAND;
}
bool AP_Landing_Deepstall::get_target_altitude_location(Location &location)
{
memcpy(&location, &landing_point, sizeof(Location));
return true;
}
int32_t AP_Landing_Deepstall::get_target_airspeed_cm(void) const
{
if (stage == DEEPSTALL_STAGE_APPROACH ||
stage == DEEPSTALL_STAGE_LAND) {
return landing.pre_flare_airspeed * 100;
} else {
return landing.aparm.airspeed_cruise*100;
}
}
bool AP_Landing_Deepstall::send_deepstall_message(mavlink_channel_t chan) const
{
CHECK_PAYLOAD_SIZE2(DEEPSTALL);
mavlink_msg_deepstall_send(
chan,
landing_point.lat,
landing_point.lng,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lat : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_exit.lng : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lat : 0.0f,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? arc_entry.lng : 0.0f,
landing_point.alt * 0.01,
stage >= DEEPSTALL_STAGE_WAIT_FOR_BREAKOUT ? predicted_travel_distance : 0.0f,
stage == DEEPSTALL_STAGE_LAND ? crosstrack_error : 0.0f,
stage);
return true;
}
const AP_PIDInfo& AP_Landing_Deepstall::get_pid_info(void) const
{
return ds_PID.get_pid_info();
}
#if HAL_LOGGING_ENABLED
void AP_Landing_Deepstall::Log(void) const {
const AP_PIDInfo& pid_info = ds_PID.get_pid_info();
struct log_DSTL pkt = {
LOG_PACKET_HEADER_INIT(LOG_DSTL_MSG),
time_us : AP_HAL::micros64(),
stage : (uint8_t)stage,
target_heading : target_heading_deg,
target_lat : landing_point.lat,
target_lng : landing_point.lng,
target_alt : landing_point.alt,
crosstrack_error : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ?
constrain_float(crosstrack_error * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0),
travel_distance : (int16_t)(stage >= DEEPSTALL_STAGE_LAND ?
constrain_float(predicted_travel_distance * 1e2f, (float)INT16_MIN, (float)INT16_MAX) : 0),
l1_i : stage >= DEEPSTALL_STAGE_LAND ? L1_xtrack_i : 0.0f,
loiter_sum_cd : stage >= DEEPSTALL_STAGE_ESTIMATE_WIND ? loiter_sum_cd : 0,
desired : pid_info.target,
P : pid_info.P,
I : pid_info.I,
D : pid_info.D,
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
#endif
// termination handling, expected to set the servo outputs
bool AP_Landing_Deepstall::terminate(void) {
// if we were not in a deepstall, mark us as being in one
if(!landing.flags.in_progress || stage != DEEPSTALL_STAGE_LAND) {
stall_entry_time = AP_HAL::millis();
ds_PID.reset();
L1_xtrack_i = 0.0f;
landing.flags.in_progress = true;
stage = DEEPSTALL_STAGE_LAND;
if(landing.ahrs.get_location(landing_point)) {
build_approach_path(true);
} else {
hold_level = true;
}
}
// set the servo ouptuts, this can fail, so this is the important return value for the AFS
return override_servos();
}
void AP_Landing_Deepstall::build_approach_path(bool use_current_heading)
{
float loiter_radius = landing.nav_controller->loiter_radius(landing.aparm.loiter_radius);
Vector3f wind = landing.ahrs.wind_estimate();
// TODO: Support a user defined approach heading
target_heading_deg = use_current_heading ? landing.ahrs.get_yaw_deg() : (degrees(atan2f(-wind.y, -wind.x)));
memcpy(&extended_approach, &landing_point, sizeof(Location));
memcpy(&arc_exit, &landing_point, sizeof(Location));
//extend the approach point to 1km away so that there is always a navigational target
extended_approach.offset_bearing(target_heading_deg, 1000.0);
float expected_travel_distance = predict_travel_distance(wind, is_zero(approach_alt_offset) ? landing_point.alt * 0.01f : approach_alt_offset,
false);
float approach_extension_m = expected_travel_distance + approach_extension;
float loiter_radius_m_abs = fabsf(loiter_radius);
// an approach extensions must be at least half the loiter radius, or the aircraft has a
// decent chance to be misaligned on final approach
approach_extension_m = MAX(approach_extension_m, loiter_radius_m_abs * 0.5f);
arc_exit.offset_bearing(target_heading_deg + 180, approach_extension_m);
memcpy(&arc, &arc_exit, sizeof(Location));
memcpy(&arc_entry, &arc_exit, sizeof(Location));
float arc_heading_deg = target_heading_deg + (landing_point.loiter_ccw ? -90.0f : 90.0f);
arc.offset_bearing(arc_heading_deg, loiter_radius_m_abs);
arc_entry.offset_bearing(arc_heading_deg, loiter_radius_m_abs * 2);
#ifdef DEBUG_PRINTS
// TODO: Send this information via a MAVLink packet
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Arc: %3.8f %3.8f",
(double)(arc.lat / 1e7),(double)( arc.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loiter en: %3.8f %3.8f",
(double)(arc_entry.lat / 1e7), (double)(arc_entry.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loiter ex: %3.8f %3.8f",
(double)(arc_exit.lat / 1e7), (double)(arc_exit.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Extended: %3.8f %3.8f",
(double)(extended_approach.lat / 1e7), (double)(extended_approach.lng / 1e7));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Extended by: %f (%f)", (double)approach_extension_m,
(double)expected_travel_distance);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Target Heading: %3.1f", (double)target_heading_deg);
#endif // DEBUG_PRINTS
}
float AP_Landing_Deepstall::predict_travel_distance(const Vector3f wind, const float height, const bool print)
{
bool reverse = false;
float course = radians(target_heading_deg);
// a forward speed of 0 will result in a divide by 0
float forward_speed_ms = MAX(forward_speed, 0.1f);
Vector2f wind_vec(wind.x, wind.y); // work with the 2D component of wind
float wind_length = MAX(wind_vec.length(), 0.05f); // always assume a slight wind to avoid divide by 0
Vector2f course_vec(cosf(course), sinf(course));
float offset = course - atan2f(-wind.y, -wind.x);
// estimator for how far the aircraft will travel while entering the stall
float stall_distance = slope_a * wind_length * cosf(offset) + slope_b;
float theta = acosf(constrain_float((wind_vec * course_vec) / wind_length, -1.0f, 1.0f));
if ((course_vec % wind_vec) > 0) {
reverse = true;
theta *= -1;
}
float cross_component = sinf(theta) * wind_length;
float estimated_crab_angle = asinf(constrain_float(cross_component / forward_speed_ms, -1.0f, 1.0f));
if (reverse) {
estimated_crab_angle *= -1;
}
float estimated_forward = cosf(estimated_crab_angle) * forward_speed_ms + cosf(theta) * wind_length;
if (is_positive(down_speed)) {
predicted_travel_distance = (estimated_forward * height / down_speed) + stall_distance;
} else {
// if we don't have a sane downward speed in a deepstall (IE not zero, and not
// an ascent) then just provide the stall_distance as a reasonable approximation
predicted_travel_distance = stall_distance;
}
if(print) {
// allow printing the travel distances on the final entry as its used for tuning
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Deepstall: Entry: %0.1f (m) Travel: %0.1f (m)",
(double)stall_distance, (double)predicted_travel_distance);
}
return predicted_travel_distance;
}
bool AP_Landing_Deepstall::verify_breakout(const Location &current_loc, const Location &target_loc,
const float height_error) const
{
const Vector2f location_delta = current_loc.get_distance_NE(target_loc);
const float heading_error = degrees(landing.ahrs.groundspeed_vector().angle(location_delta));
// Check to see if the plane is heading toward the land waypoint. We use 20 degrees (+/-10 deg)
// of margin so that the altitude to be within 5 meters of desired
if (heading_error <= 10.0 && fabsf(height_error) < DEEPSTALL_LOITER_ALT_TOLERANCE) {
// Want to head in a straight line from _here_ to the next waypoint instead of center of loiter wp
return true;
}
return false;
}
float AP_Landing_Deepstall::update_steering()
{
Location current_loc;
if ((!landing.ahrs.get_location(current_loc) || !landing.ahrs.healthy()) && !hold_level) {
// panic if no position source is available
// continue the stall but target just holding the wings held level as deepstall should be a minimal
// energy configuration on the aircraft, and if a position isn't available aborting would be worse
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "Deepstall: Invalid data from AHRS. Holding level");
hold_level = true;
}
float desired_change = 0.0f;
if (!hold_level) {
uint32_t time = AP_HAL::millis();
float dt = constrain_float(time - last_time, (uint32_t)10UL, (uint32_t)200UL) * 1e-3;
last_time = time;
Vector2f ab = arc_exit.get_distance_NE(extended_approach);
ab.normalize();
const Vector2f a_air = arc_exit.get_distance_NE(current_loc);
crosstrack_error = a_air % ab;
float sine_nu1 = constrain_float(crosstrack_error / MAX(L1_period, 0.1f), -0.7071f, 0.7107f);
float nu1 = asinf(sine_nu1);
if (L1_i > 0) {
L1_xtrack_i += nu1 * L1_i / dt;
L1_xtrack_i = constrain_float(L1_xtrack_i, -0.5f, 0.5f);
nu1 += L1_xtrack_i;
}
desired_change = wrap_PI(radians(target_heading_deg) + nu1 - landing.ahrs.get_yaw_rad()) / time_constant;
}
float yaw_rate = landing.ahrs.get_gyro().z;
float yaw_rate_limit_rps = radians(yaw_rate_limit);
float error = wrap_PI(constrain_float(desired_change, -yaw_rate_limit_rps, yaw_rate_limit_rps) - yaw_rate);
#ifdef DEBUG_PRINTS
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "x: %f e: %f r: %f d: %f",
(double)crosstrack_error,
(double)error,
(double)degrees(yaw_rate),
(double)current_loc.get_distance(landing_point));
#endif // DEBUG_PRINTS
return ds_PID.get_pid(error);
}
#endif // HAL_LANDING_DEEPSTALL_ENABLED