#include "Sub.h" bool ModeAlthold::init(bool ignore_checks) { if(!sub.control_check_barometer()) { return false; } // initialize vertical maximum speeds and acceleration // sets the maximum speed up and down returned by position controller // All limits must be positive position_control->D_set_max_speed_accel_cm(sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); position_control->D_set_correction_speed_accel_cm(sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); // initialise position and desired velocity position_control->D_init_controller(); sub.last_pilot_heading_rad = ahrs.get_yaw_rad(); return true; } // althold_run - runs the althold controller // should be called at 100hz or more void ModeAlthold::run() { run_pre(); control_depth(); run_post(); } void ModeAlthold::run_pre() { uint32_t tnow = AP_HAL::millis(); // initialize vertical speeds and acceleration // All limits must be positive position_control->D_set_max_speed_accel_cm(sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle) attitude_control->set_throttle_out(NEUTRAL_THROTTLE,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); position_control->D_relax_controller(motors.get_throttle_hover()); sub.last_pilot_heading_rad = ahrs.get_yaw_rad(); return; } motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // get pilot desired lean angles float target_roll, target_pitch; // Check if set_attitude_target_no_gps is valid if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) { float target_yaw; Quaternion( sub.set_attitude_target_no_gps.packet.q ).to_euler( target_roll, target_pitch, target_yaw ); target_roll = degrees(target_roll); target_pitch = degrees(target_pitch); target_yaw = degrees(target_yaw); attitude_control->input_euler_angle_roll_pitch_yaw_cd(target_roll * 1e2f, target_pitch * 1e2f, target_yaw * 1e2f, true); return; } sub.get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control->get_althold_lean_angle_max_cd()); // get pilot's desired yaw rate float yaw_input = channel_yaw->pwm_to_angle_dz_trim(channel_yaw->get_dead_zone() * sub.gain, channel_yaw->get_radio_trim()); float target_yaw_rate = sub.get_pilot_desired_yaw_rate(yaw_input); // call attitude controller if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot input attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_cd(target_roll, target_pitch, target_yaw_rate); sub.last_pilot_heading_rad = ahrs.get_yaw_rad(); sub.last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading } else { // hold current heading // this check is required to prevent bounce back after very fast yaw maneuvers // the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped if (tnow < sub.last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target heading target_yaw_rate = 0; // Stop rotation on yaw axis // call attitude controller with target yaw rate = 0 to decelerate on yaw axis attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw_cd(target_roll, target_pitch, target_yaw_rate); sub.last_pilot_heading_rad = ahrs.get_yaw_rad(); // update heading to hold } else { // call attitude controller holding absolute bearing attitude_control->input_euler_angle_roll_pitch_yaw_cd(target_roll, target_pitch, rad_to_cd(sub.last_pilot_heading_rad), true); } } } void ModeAlthold::run_post() { motors.set_forward(channel_forward->norm_input()); motors.set_lateral(channel_lateral->norm_input()); } void ModeAlthold::control_depth() { // return 0.2f when at the surface to p // scale linearly between 0.2f and 1.0f as we approach the surface float distance_to_surface = (g.surface_depth - inertial_nav.get_position_z_up_cm()) * 0.01f; distance_to_surface = constrain_float(distance_to_surface, 0.0f, 1.0f); motors.set_max_throttle(g.surface_max_throttle + (1.0f - g.surface_max_throttle) * distance_to_surface); float target_climb_rate_cms = sub.get_pilot_desired_climb_rate(channel_throttle->get_control_in()); target_climb_rate_cms = constrain_float(target_climb_rate_cms, -sub.get_pilot_speed_dn(), g.pilot_speed_up); // desired_climb_rate returns 0 when within the deadzone. //we allow full control to the pilot, but as soon as there's no input, we handle being at surface/bottom if (fabsf(target_climb_rate_cms) < 0.05f) { if (sub.ap.at_surface) { position_control->set_pos_desired_U_cm(MIN(position_control->get_pos_desired_U_cm(), g.surface_depth)); // set target to 5 cm below surface level } else if (sub.ap.at_bottom) { position_control->set_pos_desired_U_cm(MAX(inertial_nav.get_position_z_up_cm() + 10.0f, position_control->get_pos_desired_U_cm())); // set target to 10 cm above bottom } } position_control->D_set_pos_target_from_climb_rate_cms(target_climb_rate_cms); position_control->D_update_controller(); }