mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-07 21:23:15 +08:00
125 lines
2.9 KiB
Matlab
125 lines
2.9 KiB
Matlab
function [sys,x0,str,ts] = Book6331_Controller(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
global c b node
|
||
% 神经网络采用2 - 5 - 1结构
|
||
node = 5;
|
||
c = 1 * [-1.0 -0.5 0 0.5 1 ;
|
||
-1.0 -0.5 0 0.5 1]; % 高斯函数的中心点矢量 维度 IN * MID 2*5
|
||
b = 50 * ones(node,1); % 高斯函数的基宽 维度node * 1 7*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
sizes = simsizes;
|
||
sizes.NumContStates = node; %设置系统连续状态的变量 W V
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 2; %设置系统输出的变量
|
||
sizes.NumInputs = 4; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0 * ones(node,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c b node
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
% 角度跟踪指令
|
||
% qd = sin(t);
|
||
dqd = cos(t);
|
||
|
||
qd = u(1);
|
||
q = u(2);
|
||
dq = u(3);
|
||
|
||
e = q - qd; % e = q - qd
|
||
de = dq - dqd;
|
||
|
||
% 参数的定义
|
||
xite = 1000;
|
||
alpha = 200;
|
||
gama = 0.1;
|
||
|
||
input = [e; de];
|
||
h = zeros(node , 1); %7*1矩阵
|
||
for i =1:node
|
||
h(i) = exp(-(norm(input - c(:,i))^2) / (2*b(i)^2)); % 7*1
|
||
end
|
||
|
||
W = x(1:node); % 5*1
|
||
% 权值的自适应律
|
||
x_2 = de + alpha * e;
|
||
dw = - xite * x_2 * h';
|
||
for i = 1:node
|
||
sys(i) = dw(i);
|
||
end
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c b node
|
||
% 角度跟踪指令
|
||
% dqd1 = 0.1*cos(t);
|
||
% dqd2 = 0.1*cos(t);
|
||
% qd = sin(t);
|
||
dqd = cos(t);
|
||
ddqd = -sin(t);
|
||
|
||
qd = u(1);
|
||
q = u(2);
|
||
dq = u(3);
|
||
ddq = u(4);
|
||
|
||
e = q - qd; % e = q - qd
|
||
de = dq - dqd;
|
||
|
||
% 参数的定义
|
||
M = 1;
|
||
xite = 1000;
|
||
alpha = 200;
|
||
gama = 0.1;
|
||
|
||
input = [e; de];
|
||
h = zeros(node , 1); %5*1矩阵
|
||
for i =1:node
|
||
h(i) = exp(-(norm(input - c(:,i))^2) / (2*b(i)^2)); % 5*1
|
||
end
|
||
W = x(1:node); % 5*1
|
||
|
||
% 神经网络的输出
|
||
fx = W' * h;
|
||
V = 0;
|
||
omiga = M * alpha * de + V * alpha * e;
|
||
x_2 = de + alpha * e;
|
||
ut = -omiga - 1/(2*gama*gama)*x_2 + W' * h - 1/2*x_2;
|
||
G = 0;
|
||
tau = ut + M*ddqd + V * dqd + G;
|
||
|
||
sys(1) = tau;
|
||
sys(2) = fx;
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|