Files
RBF_NeuralNetwork/Book331_Controller.m
2021-01-04 10:31:19 +08:00

85 lines
2.2 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
function [sys,x0,str,ts] = Book331_Controller(t,x,u,flag)
switch flag
case 0
[sys,x0,str,ts]=mdlInitializeSizes;
case 1
sys=mdlDerivatives(t,x,u);
case {2,4,9}
sys=[];
case 3
sys=mdlOutputs(t,x,u);
otherwise
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
sizes = simsizes;
sizes.NumContStates = 0; %设置系统连续状态的变量
sizes.NumDiscStates = 0; %设置系统离散状态的变量
sizes.NumOutputs = 1; %设置系统输出的变量
sizes.NumInputs = 2; %设置系统输入的变量
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u则应该将本参数设置为1
sizes.NumSampleTimes = 0; % 模块采样周期的个数
% 需要的样本时间一般为1.
% 猜测为如果为n则下一时刻的状态需要知道前n个状态的系统状态
sys = simsizes(sizes);
x0 = []; % 系统初始状态变量
str = []; % 保留变量,保持为空
ts = []; % 采样时间[t1 t2] t1为采样周期如果取t1=-1则将继承输入信号的采样周期参数t2为偏移量一般取为0
global W_past W_new V_new V_past c b ut_new ut_past
% 神经网络采用1-6-1结构
W_new = [0.5; 0.5; 0.5; 0.5; 0.5; 0.5]; %6*1矩阵
W_past = W_new;
V_new = [0.5; 0.5; 0.5; 0.5; 0.5; 0.5]; %6*1矩阵
V_past = V_new;
c = [0.5 0.5 0.5 0.5 0.5 0.5];
b = [5;5;5;5;5;5];
ut_new = 0;
ut_past = ut_new;
function sys=mdlOutputs(t,x,u) %产生(传递)系统输出
global W_past W_new V_new V_past c b ut_new ut_past
% 神经网络采用1-6-1结构
xitew = 0.15; %学习速率1
xitev = 0.5; %学习速率2
alfa = 0.05; %动量因子
IN = 1;
Mid = 6;
Out = 1;
yd = u(1);
yk = u(2);
some = [u(1); u(2)];
h = zeros(1,6); %1*6矩阵
for i =1:Mid
h(i) = exp(-(norm(yk - c(:,i))^2) / (2*b(i)^2));
end
ut1 = h * W_new;
ut2 = h * V_new;
ut_new = -(ut1/ut2) + (yd/ut2);
sys(1) = ut_new;
% 权值的修正
deltaw = zeros(6,1);
for i = 1:6
deltaw(i) = xitew * (yk - yd) * h(i);
end
W_new = W_new + deltaw + alfa*(W_new - W_past);
deltav = zeros(6,1);
for i = 1:6
deltav(i) = xitev * (yk - yd) * h(i) * ut_new;
end
V_new = V_new + deltav + alfa*(V_new - V_past);
W_past = W_new;
V_past = V_new;
ut_past = ut_new;