mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 19:25:37 +08:00
158 lines
3.6 KiB
Matlab
158 lines
3.6 KiB
Matlab
function [sys,x0,str,ts] = Book532_Controller(t,x,u,flag)
|
||
% 以下程序是 基于RBF神经网络的直接鲁棒自适应控制
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
sizes = simsizes;
|
||
sizes.NumContStates = 10; %设置系统连续状态的变量
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 4; %设置系统输出的变量
|
||
sizes.NumInputs = 4; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0.1 * ones(10,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
global c b
|
||
% 神经网络采用2-5-1结构
|
||
c = 2*[-1 -0.5 -0 0.5 1;
|
||
-1 -0.5 -0 0.5 1]; % 高斯函数的中心点矢量 维度 IN * MID 2*5
|
||
b = 10; % 高斯函数的基宽 维度MID * 1 1*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c b
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
IN = 2;
|
||
Mid = 5;
|
||
Out = 1;
|
||
yd = 0.1 * sin(t);
|
||
dyd = 0.1 * cos(t);
|
||
ddyd = -0.1 * sin(t);
|
||
|
||
c1 = 5;
|
||
gama1 = 10;
|
||
gama2 = 10;
|
||
xite = 0.01;
|
||
x_1 = u(1);
|
||
x_2 = u(2);
|
||
e = u(3);
|
||
de = u(4);
|
||
|
||
s = c1 * e + de;
|
||
|
||
Input = [x_1; x_2];
|
||
h = zeros(Mid , 1); %5*1矩阵
|
||
for i =1:Mid
|
||
h(i) = exp(-(norm(Input - c(:,i))^2) / (2*b^2));
|
||
end
|
||
W = [x(1); x(2); x(3); x(4); x(5)];
|
||
fx = W' * h;
|
||
S1 = -gama1 * s * h;
|
||
for i = 1:5
|
||
sys(i) = S1(i);
|
||
end
|
||
th = u(1); % 摆角
|
||
dth = u(2); % 摆速
|
||
|
||
% 参数的定义
|
||
g = 9.8;
|
||
mc = 1; %小车质量
|
||
m = 0.1; %摆的质量
|
||
l = 0.5;
|
||
f_up = g*sin(th) - m*l*dth^2*cos(th)*sin(th)/(mc+m);
|
||
f_down = l *(4/3 - m*(cos(th)^2)/(mc+m));
|
||
f = f_up / f_down;
|
||
|
||
V = [x(6); x(7); x(8); x(9); x(10)];
|
||
gx = V' * h ;
|
||
ut = 1 / gx * (-f + ddyd + c1 * de + xite * sign(s));
|
||
S2 = -gama2 * s * h * ut;
|
||
for i = 6:10
|
||
sys(i) = S2(i - 5);
|
||
end
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c b
|
||
IN = 2;
|
||
Mid = 5;
|
||
Out = 1;
|
||
yd = 0.1 * sin(t);
|
||
dyd = 0.1 * cos(t);
|
||
ddyd = -0.1 * sin(t);
|
||
c1 = 15;
|
||
|
||
x_1 = u(1);
|
||
x_2 = u(2);
|
||
e = u(3);
|
||
de = u(4);
|
||
|
||
s = c1 * e + de;
|
||
|
||
Input = [x_1; x_2];
|
||
|
||
h = zeros(Mid , 1); %13*1矩阵
|
||
for i =1:Mid
|
||
h(i) = exp(-(norm(Input - c(:,i))^2) / (2*b^2));
|
||
end
|
||
W = [x(1); x(2); x(3); x(4); x(5)];
|
||
fx = W' * h;
|
||
|
||
V = [x(6); x(7); x(8); x(9); x(10)];
|
||
gx = V' * h ;
|
||
|
||
th = x(1); % 摆角
|
||
dth = x(2); % 摆速
|
||
|
||
% 参数的定义
|
||
g = 9.8;
|
||
mc = 1; %小车质量
|
||
m = 0.1; %摆的质量
|
||
l = 0.5;
|
||
f_up = g*sin(th) - m*l*dth^2*cos(th)*sin(th)/(mc+m);
|
||
f_down = l *(4/3 - m*(cos(th)^2)/(mc+m));
|
||
f = f_up / f_down;
|
||
g_up = cos(th)/(mc+m);
|
||
g_down = l *(4/3 - m*(cos(th)^2)/(mc+m));
|
||
g = g_up / g_down;
|
||
|
||
% if t<=1.5
|
||
% xite = 1.0;
|
||
% else
|
||
% xite = 0.1;
|
||
% end
|
||
|
||
xite = 1;
|
||
ut = 1 / gx * (-f + ddyd + c1 * de + xite * sign(s));
|
||
|
||
sys(1) = ut;
|
||
sys(2) = fx;
|
||
sys(3) = gx;
|
||
sys(4) = s;
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|