mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 11:09:47 +08:00
192 lines
4.5 KiB
Matlab
192 lines
4.5 KiB
Matlab
function [sys,x0,str,ts] = Book7241_Controller(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
global c1 b1 node c2 b2 c3 b3 s_new s_past inte_s
|
||
% 神经网络采用2 - 7 - 1结构 采用3个2*7*1 神经网络
|
||
node = 7;
|
||
c1 = 1 * [-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5]; % 高斯函数的中心点矢量 维度 IN * MID 2*7
|
||
b1 = 20 * ones(node,1); % 高斯函数的基宽 维度node * 1 7*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
c2 = 1 * [-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5];
|
||
b2 = 20 * ones(node,1);
|
||
c3 = 1 * [-1.5 -1.0 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1.0 -0.5 0 0.5 1 1.5];
|
||
b3 = 20 * ones(node,1);
|
||
s_new = 0;
|
||
s_past = s_new;
|
||
inte_s = 0;
|
||
sizes = simsizes;
|
||
sizes.NumContStates = node*3; %设置系统连续状态的变量 W V
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 4; %设置系统输出的变量
|
||
sizes.NumInputs = 4; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0 * ones(node*3,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c1 b1 node c2 b2 c3 b3 s_new s_past inte_s
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
% 角度跟踪指令
|
||
% qd = sin(t);
|
||
dqd = cos(t);
|
||
ddqd = -sin(t);
|
||
|
||
qd = u(1);
|
||
q = u(2);
|
||
dq = u(3);
|
||
ddq = u(4);
|
||
|
||
e = qd - q; % e = qd - q
|
||
de = dqd - dq;
|
||
dde = ddqd - ddq;
|
||
|
||
% 参数的定义
|
||
kr = 0.1;
|
||
kp = 15;
|
||
kt = 15;
|
||
xite = 5.0;
|
||
gamam = 100;
|
||
gamac = 100;
|
||
gamag = 100;
|
||
|
||
s_new = xite * e + de;
|
||
dqr = xite * e + dqd;
|
||
ddqr = xite * de + ddqd;
|
||
|
||
% 神经网络的输入
|
||
input = [q; dq];
|
||
h1 = zeros(node , 1); %7*1矩阵
|
||
h2 = zeros(node , 1); %7*1矩阵
|
||
h3 = zeros(node , 1); %7*1矩阵
|
||
for i =1:node
|
||
h1(i) = exp(-(norm(input - c1(:,i))^2) / (b1(i)^2)); % 7*1
|
||
end
|
||
for i =1:node
|
||
h2(i) = exp(-(norm(input - c2(:,i))^2) / (b2(i)^2)); % 7*1
|
||
end
|
||
for i =1:node
|
||
h3(i) = exp(-(norm(input - c3(:,i))^2) / (b3(i)^2)); % 7*1
|
||
end
|
||
|
||
W1 = x(1:node); % 7*1
|
||
W2 = x(node+1: node*2);
|
||
W3 = x(node*2+1: node*3);
|
||
|
||
% 权值的自适应律
|
||
dw1 = gamam * h1 * ddqr * s_new;
|
||
dw2 = gamac * h2 * dqr * s_new;
|
||
dw3 = gamag * h3 * s_new;
|
||
|
||
for i = 1:node
|
||
sys(i) = dw1(i);
|
||
sys(i+7) = dw2(i);
|
||
sys(i+14) = dw3(i);
|
||
end
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c1 b1 node c2 b2 c3 b3 s_new s_past inte_s
|
||
% 角度跟踪指令
|
||
% dqd1 = 0.1*cos(t);
|
||
% dqd2 = 0.1*cos(t);
|
||
% qd = sin(t);
|
||
dqd = cos(t);
|
||
ddqd = -sin(t);
|
||
|
||
qd = u(1);
|
||
q = u(2);
|
||
dq = u(3);
|
||
ddq = u(4);
|
||
|
||
e = qd - q; % e = qd - q
|
||
de = dqd - dq;
|
||
dde = ddqd - ddq;
|
||
|
||
% 参数的定义
|
||
kr = 0.1;
|
||
kp = 15;
|
||
ki = 15;
|
||
xite = 5.0;
|
||
gamam = 100;
|
||
gamac = 100;
|
||
gamag = 100;
|
||
|
||
s_new = xite * e + de;
|
||
dqr = xite * e + dqd;
|
||
ddqr = xite * de + ddqd;
|
||
|
||
% 神经网络的输入
|
||
input = [q; dq];
|
||
h1 = zeros(node , 1); %7*1矩阵
|
||
h2 = zeros(node , 1); %7*1矩阵
|
||
h3 = zeros(node , 1); %7*1矩阵
|
||
for i =1:node
|
||
h1(i) = exp(-(norm(input - c1(:,i))^2) / (b1(i)^2)); % 7*1
|
||
end
|
||
for i =1:node
|
||
h2(i) = exp(-(norm(input - c2(:,i))^2) / (b2(i)^2)); % 7*1
|
||
end
|
||
for i =1:node
|
||
h3(i) = exp(-(norm(input - c3(:,i))^2) / (b3(i)^2)); % 7*1
|
||
end
|
||
|
||
W1 = x(1:node); % 7*1
|
||
W2 = x(node+1: node*2);
|
||
W3 = x(node*2+1: node*3);
|
||
|
||
% 神经网络的输出
|
||
fx1 = W1' * h1;
|
||
fx2 = W2' * h2;
|
||
fx3 = W3' * h3;
|
||
|
||
M_refer = fx1;
|
||
C_refer = fx2;
|
||
G_refer = fx3;
|
||
|
||
% 名义模型控制律
|
||
taum = M_refer*ddqr + C_refer*dqr + G_refer;
|
||
% 鲁棒项
|
||
taur = kr*sign(s_new);
|
||
dt = 0.001;
|
||
inte_s = inte_s + (s_past + s_new)*dt/2;
|
||
tau = taum + kp*s_new + ki*inte_s + taur;
|
||
|
||
|
||
sys(1) = tau;
|
||
sys(2) = fx1;
|
||
sys(3) = fx2;
|
||
sys(4) = fx3;
|
||
s_past = s_new;
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|