mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 11:09:47 +08:00
174 lines
3.8 KiB
Matlab
174 lines
3.8 KiB
Matlab
function [sys,x0,str,ts] = Book6242_Controller(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
global c b node
|
||
% 神经网络采用4 - 7 - 2结构
|
||
node = 7;
|
||
c = 1 * [-1.5 -1 -0.5 0 0.5 1 1.5;
|
||
-1.5 -1 -0.5 0 0.5 1 1.5]; % 高斯函数的中心点矢量 维度 IN * MID 2*7
|
||
b = 10 * ones(node,1); % 高斯函数的基宽 维度node * 1 5*1 b的选择很重要 b越大 网路对输入的映射能力越大
|
||
sizes = simsizes;
|
||
sizes.NumContStates = node*2; %设置系统连续状态的变量 W V
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 6; %设置系统输出的变量
|
||
sizes.NumInputs = 6; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = 0 * ones(node*2,1); % 系统初始状态变量 代表W和V向量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
|
||
|
||
function sys = mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global c b node
|
||
% 仿真中应根据网络输入值的有效映射范围来设计 c和b 从而保证有效的高斯映射 不合适的b或c均会导致结果不正确
|
||
% 角度跟踪指令
|
||
qd1 = 0.1*sin(t);
|
||
qd2 = 0.1*sin(t);
|
||
dqd1 = 0.1*cos(t);
|
||
dqd2 = 0.1*cos(t);
|
||
|
||
q1 = u(1);
|
||
q2 = u(2);
|
||
dq1 = u(3);
|
||
dq2 = u(4);
|
||
|
||
e1 = qd1 - q1; % e = qd - q
|
||
e2 = qd2 - q2;
|
||
de1 = dqd1 - dq1;
|
||
de2 = dqd2 - dq2;
|
||
|
||
% 参数的定义
|
||
kv = [10 0; 0 10];
|
||
ita = [15 0;0 15];
|
||
xite1 = 5;
|
||
xite2 = 5;
|
||
|
||
% 滑模函数
|
||
s1 = de1 + xite1*e1;
|
||
s2 = de2 + xite2*e2;
|
||
s = [s1;s2];
|
||
|
||
Input1 = [e1;de1];
|
||
hw = zeros(node, 1); %7*1矩阵
|
||
for j = 1:node
|
||
hw(j) = exp(-(norm(Input1 - c(:,j))^2) / (b(j)^2));
|
||
end
|
||
|
||
Input2 = [e2;de2];
|
||
hv = zeros(node, 1); %7*1矩阵
|
||
for j = 1:node
|
||
hv(j) = exp(-(norm(Input2 - c(:,j))^2) / (b(j)^2));
|
||
end
|
||
|
||
W = x(1:node); % node*1
|
||
V = x(node+1:2*node);
|
||
|
||
% W权值的更新
|
||
dw1 = ita(1)*hw*s(1);
|
||
dw2 = ita(4)*hv*s(2);
|
||
for i = 1:node
|
||
sys(i) = dw1(i);
|
||
sys(i+node) = dw2(i);
|
||
end
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global c b node
|
||
% 角度跟踪指令
|
||
qd1 = 0.1*sin(t);
|
||
qd2 = 0.1*sin(t);
|
||
dqd1 = 0.1*cos(t);
|
||
dqd2 = 0.1*cos(t);
|
||
|
||
q1 = u(1);
|
||
q2 = u(2);
|
||
dq1 = u(3);
|
||
dq2 = u(4);
|
||
K1 = u(5);
|
||
K2 = u(6);
|
||
|
||
e1 = qd1 - q1; % e = qd - q
|
||
e2 = qd2 - q2;
|
||
de1 = dqd1 - dq1;
|
||
de2 = dqd2 - dq2;
|
||
|
||
% 参数的定义
|
||
kv = [20 0; 0 20];
|
||
ita = [15 0;0 15];
|
||
xite1 = 5;
|
||
xite2 = 5;
|
||
epc = 2;
|
||
bd = 2.1;
|
||
|
||
% 滑模函数
|
||
s1 = de1 + xite1*e1;
|
||
s2 = de2 + xite2*e2;
|
||
|
||
d1 = norm(s1)/sqrt(xite1^2+1);
|
||
d2 = norm(s2)/sqrt(xite2^2+1);
|
||
|
||
% 滑模函数
|
||
s1 = de1 + xite1*e1;
|
||
s2 = de2 + xite2*e2;
|
||
s = [s1;s2];
|
||
|
||
Input1 = [e1;de1];
|
||
hw = zeros(node, 1); %7*1矩阵
|
||
for j = 1:node
|
||
hw(j) = exp(-(norm(Input1 - c(:,j))^2) / (b(j)^2));
|
||
end
|
||
|
||
Input2 = [e2;de2];
|
||
hv = zeros(node, 1); %7*1矩阵
|
||
for j = 1:node
|
||
hv(j) = exp(-(norm(Input2 - c(:,j))^2) / (b(j)^2));
|
||
end
|
||
|
||
W = x(1:node); % node*1
|
||
V = x(node+1:2*node);
|
||
|
||
% 神经网络的输出
|
||
fx1 = W' * hw;
|
||
fx2 = V' * hv;
|
||
v = -(epc+bd)*sign(s);
|
||
|
||
temp1 = (abs(K1)+1)*sign(s1);
|
||
temp2 = (abs(K2)+1)*sign(s2);
|
||
v_new = -[temp1; temp2];
|
||
|
||
tau = [fx1;fx2]+kv*s-v;
|
||
|
||
sys(1) = tau(1);
|
||
sys(2) = tau(2);
|
||
sys(3) = fx1;
|
||
sys(4) = fx2;
|
||
sys(5) = s1;
|
||
sys(6) = s2;
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|