mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 11:09:47 +08:00
94 lines
2.5 KiB
Matlab
94 lines
2.5 KiB
Matlab
function [sys,x0,str,ts] = Book6142_Plant(t,x,u,flag)
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case 1 %连续状态计算
|
||
sys=mdlDerivatives(t,x,u);
|
||
case {2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
sizes = simsizes;
|
||
sizes.NumContStates = 4; %设置系统连续状态的变量
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 4; %设置系统输出的变量
|
||
sizes.NumInputs = 2; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 0; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = [0.6 0.3 0.5 0.5]; % 系统初始状态变量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
global ddq1 ddq2
|
||
ddq1 = 0;
|
||
ddq2 = 0;
|
||
|
||
function sys=mdlDerivatives(t,x,u) %该函数仅在连续系统中被调用,用于产生控制系统状态的导数
|
||
global ddq1 ddq2
|
||
tau1 = u(1); %力矩1
|
||
tau2 = u(2); %力矩2
|
||
|
||
q1 = x(1); % 关节角一
|
||
q2 = x(2); % 关节角二
|
||
dq1 = x(3); % 关节角速度一
|
||
dq2 = x(4); % 关节角速度一
|
||
|
||
% 参数的定义
|
||
v = 13.33;
|
||
a1 = 8.98;
|
||
a2 = 8.75;
|
||
g = 9.8;
|
||
d1 = 2;
|
||
d2 = 3;
|
||
d3 = 6;
|
||
|
||
% 角度跟踪指令
|
||
qd1 = 1+0.2*sin(0.5*pi*t);
|
||
qd2 = 1-0.2*cos(0.5*pi*t);
|
||
dqd1 = 0.1*pi*cos(0.5*pi*t);
|
||
dqd2 = 0.1*pi*sin(0.5*pi*t);
|
||
|
||
M = [v+a1+2*a2*cos(q2) a1+a2*cos(q2);
|
||
a1+a2*cos(q2) a1];
|
||
C = [-a2*dq2*sin(q2) -a2*(dq1 + dq2)*sin(q2);
|
||
a2*dq1*sin(q2) 0];
|
||
G = [15*g*cos(q1)+8.75*g*cos(q1+q2);
|
||
8.75*g*cos(q1+q2)];
|
||
deltam = 0.2*M;
|
||
deltac = 0.2*C;
|
||
deltag = 0.2*G;
|
||
% 外部干扰
|
||
e1 = q1 - qd1;
|
||
e2 = q2 - qd2;
|
||
de1 = dq1 - dqd1;
|
||
de2 = dq2 - dqd2;
|
||
ddq = [ddq1; ddq2];
|
||
|
||
d = d1 + d2 * norm([e1;e2]) + d3 * norm([de1; de2]);
|
||
f = deltam * ddq + deltac * [dq1; dq2] + deltag + d;
|
||
tau = [tau1; tau2];
|
||
|
||
ddq = inv(M) * (tau - C*[dq1; dq2] - G + f);
|
||
|
||
sys(1) = x(3);
|
||
sys(2) = x(4);
|
||
sys(3) = ddq(1);
|
||
sys(4) = ddq(2);
|
||
|
||
|
||
function sys=mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
sys(1) = x(1); %q1
|
||
sys(2) = x(2); %q2
|
||
sys(3) = x(3); %dq1
|
||
sys(4) = x(4); %dq2
|
||
|
||
|
||
|