mirror of
https://github.com/ohmyjesus/RBF_NeuralNetwork.git
synced 2026-02-05 11:09:47 +08:00
70 lines
2.0 KiB
Matlab
70 lines
2.0 KiB
Matlab
function [sys,x0,str,ts] = Book2221_controller(t,x,u,flag)
|
||
% RBF神经网络自适应控制刘金琨例题2.2.2.1仿真
|
||
% 基于梯度下降法的RBF神经网络逼近
|
||
switch flag
|
||
case 0 %初始化
|
||
[sys,x0,str,ts]=mdlInitializeSizes;
|
||
case {1,2,4,9} %离散状态计算,下一步仿真时刻,终止仿真设定
|
||
sys=[];
|
||
case 3 %输出信号计算
|
||
sys=mdlOutputs(t,x,u);
|
||
otherwise
|
||
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
|
||
end
|
||
|
||
function [sys,x0,str,ts]=mdlInitializeSizes %系统的初始化
|
||
sizes = simsizes;
|
||
sizes.NumContStates = 0; %设置系统连续状态的变量
|
||
sizes.NumDiscStates = 0; %设置系统离散状态的变量
|
||
sizes.NumOutputs = 1; %设置系统输出的变量
|
||
sizes.NumInputs = 2; %设置系统输入的变量
|
||
sizes.DirFeedthrough = 1; %如果在输出方程中显含输入变量u,则应该将本参数设置为1
|
||
sizes.NumSampleTimes = 0; % 模块采样周期的个数
|
||
% 需要的样本时间,一般为1.
|
||
% 猜测为如果为n,则下一时刻的状态需要知道前n个状态的系统状态
|
||
sys = simsizes(sizes);
|
||
x0 = []; % 系统初始状态变量
|
||
str = []; % 保留变量,保持为空
|
||
ts = []; % 采样时间[t1 t2] t1为采样周期,如果取t1=-1则将继承输入信号的采样周期;参数t2为偏移量,一般取为0
|
||
% 权值初值的选择
|
||
% 神经网络PID控制器 2-5-1结构
|
||
global W_new W_past C B
|
||
C = [-1 -0.5 0 0.5 1;
|
||
-10 -5 0 5 10]; %2*5 中心矢量
|
||
B = [1.5 1.5 1.5 1.5 1.5]; %1*5 基宽度参数
|
||
W_new = rand(1,5);
|
||
W_past = W_new;
|
||
|
||
|
||
function sys = mdlOutputs(t,x,u) %产生(传递)系统输出
|
||
global W_new W_past C B
|
||
alpha = 0.05; %惯性系数
|
||
xite = 0.5; %学习效率
|
||
u_in = u(1);
|
||
y_out = u(2);
|
||
some = [u_in; y_out];
|
||
h = zeros(5,1);
|
||
for j = 1:5
|
||
h(j) = exp(-norm(some - C(:,j))^2/(2 * B(j)^2)); %6*1矩阵 径向基函数
|
||
end
|
||
% RBF的网络输出ym
|
||
ym = W_new * h;
|
||
|
||
% 权值的调整 更新值
|
||
deltaW_new = zeros(1,5);
|
||
for i = 1:5
|
||
deltaW_new(i) = xite * (y_out - ym) * h(i);
|
||
end
|
||
|
||
for i = 1:5
|
||
W_new(i) = W_new(i) + deltaW_new(i) + alpha*(W_new(i) - W_past(i));
|
||
end
|
||
|
||
sys(1) = ym;
|
||
|
||
W_past = W_new;
|
||
|
||
|
||
|
||
|