mirror of
https://github.com/WallabyLester/RBF-aPID-Controller.git
synced 2026-02-08 22:15:17 +08:00
80 lines
2.4 KiB
C++
80 lines
2.4 KiB
C++
#include <iostream>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
|
|
#include "rbf_model.h"
|
|
#include "apid_controller.h"
|
|
|
|
// Simple first order system
|
|
double simulate_system(double input, double measurement, double dt) {
|
|
return (input - measurement) * dt ;
|
|
}
|
|
|
|
int main() {
|
|
// Seed random number generator for reproducibility
|
|
std::srand(static_cast<unsigned int>(std::time(0)));
|
|
|
|
const double Kp = 4.0, Ki = 2.0, Kd = 0.08, dt = 0.1;
|
|
|
|
aPIDController apid(Kp, Ki, Kd, dt);
|
|
|
|
int n_centers = 5;
|
|
int input_dim = 3;
|
|
double sigma = 1.0;
|
|
RBFModel rbf(n_centers, input_dim, sigma, true);
|
|
|
|
double target = 1.0, measured_value = 0.0, learning_rate = 0.01;
|
|
|
|
for (int step = 0; step < 100; ++step) {
|
|
double error = target - measured_value;
|
|
|
|
double control_signal = apid.update(target, measured_value);
|
|
|
|
double gains[3] = {apid.get_Kp(), apid.get_Ki(), apid.get_Kd()};
|
|
rbf.adapt(error, learning_rate, gains);
|
|
|
|
control_signal += rbf.predict(gains);
|
|
|
|
measured_value += simulate_system(control_signal, measured_value, dt);
|
|
|
|
std::cout << "Step: " << step
|
|
<< ", Target: " << target
|
|
<< ", Measured: " << measured_value
|
|
<< ", Error: " << error
|
|
<< ", Control Signal: " << control_signal
|
|
<< std::endl;
|
|
}
|
|
|
|
// Example using training on recorded data
|
|
std::cout << "Training Example" << std::endl;
|
|
double inputs[] = {1.0, 0.1, 0.01, 1.0, 0.1, 0.01};
|
|
double targets[] = {1.0, 1.0};
|
|
|
|
aPIDController apid_new(1.0, 0.2, 0.08, dt);
|
|
RBFModel rbf_untrained(n_centers, input_dim, sigma, true);
|
|
|
|
rbf_untrained.train(inputs, targets, 2, 100, 0.01);
|
|
measured_value = 0.0;
|
|
|
|
for (int step = 0; step < 100; ++step) {
|
|
double error = target - measured_value;
|
|
|
|
double control_signal = apid_new.update(target, measured_value);
|
|
|
|
double gains[3] = {apid_new.get_Kp(), apid_new.get_Ki(), apid_new.get_Kd()};
|
|
rbf_untrained.adapt(error, learning_rate, gains);
|
|
|
|
control_signal += rbf_untrained.predict(gains);
|
|
|
|
measured_value += simulate_system(control_signal, measured_value, dt);
|
|
|
|
std::cout << "Step: " << step
|
|
<< ", Target: " << target
|
|
<< ", Measured: " << measured_value
|
|
<< ", Error: " << error
|
|
<< ", Control Signal: " << control_signal
|
|
<< std::endl;
|
|
}
|
|
|
|
return 0;
|
|
} |