Files
RBF-aPID-Controller/first_order_sim.py
2024-10-07 23:36:01 -07:00

145 lines
4.3 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
from NP_Implementation.RBF_numpy import RBFNetwork
from NP_Implementation.aPID_numpy import AdaptivePIDNP
from TF_Implementation.RBF_tf import RBFAdaptiveModel, train_rbf_adaptive
from TF_Implementation.aPID_tf import AdaptivePIDTf
def simulate_system(controller, target, dt, T):
""" Simulate control model as first order system.
Parameters
----------
controller : AdaptivePID
Any AdaptivePID class instance.
target : float64
Target setpoint.
dt : float64
Timestep.
T : float64
Total time range to simulate.
Returns
-------
Timesteps and measured_value at each.
"""
time = np.arange(0, T, dt)
measured_value = 0.0
measurements = []
for t in time:
control_signal = controller.update(target, measured_value, dt)
measured_value += (control_signal - measured_value) * dt
measurements.append(measured_value)
print(f"Control Signal: {control_signal:.2f}, Measurement: {measured_value:.2f}")
return time, measurements
def simulate_rbf_train_data(rbf_tf, apid_tf, n_epochs=100, n_samples=100):
""" Simulate training data using the RBF model and aPID.
Parameters
----------
rbf_tf : RBFAdaptiveModel
RBF Adaptive Model class instance.
apid_tf : AdaptivePIDTf
Adaptive PID class instance.
n_epochs : int
Number of epochs to simulate.
n_samples : int
Number of samples per epoch to simulate.
Returns
-------
Errors: [error, integral, derivative] and target control signals.
"""
rbf_tf.compile(optimizer="adam", loss="mean_squared_error")
errors = []
control_signals = []
target = 1.0
measured_value = 0.0
dt = 0.1
for epoch in range(n_epochs):
print(f"Epoch: {epoch}")
for sample in range(n_samples):
control_signal = apid_tf.update(target, measured_value, dt)
measured_value += (control_signal - measured_value) * dt
error = target - measured_value
errors.append([error, apid_tf.integral, apid_tf.derivative])
control_signals.append(control_signal)
print(f".", end="", flush=True)
print("")
return np.array(errors), np.array(control_signals)
if __name__ == "__main__":
# numpy implementation
np.random.seed(20)
rbf_np = RBFNetwork(input_dim=3, n_centers=5)
apid_np = AdaptivePIDNP(Kp=4.0, Ki=0.1, Kd=0.01, rbf_network=rbf_np)
target = 1.0
dt = 0.1
T = 10.0
time, measurements = simulate_system(apid_np, target, dt, T)
plt.plot(time, measurements, label="Measured Value")
plt.axhline(y=target, color="r", linestyle="--", label="Target")
plt.xlabel("Time (s)")
plt.ylabel("Output")
plt.title("Adaptive RBF Neural PID Controller Numpy")
plt.legend()
plt.grid()
plt.show()
# tensorflow implementation
rbf_tf = RBFAdaptiveModel(n_centers=5, input_dim=3)
rbf_tf.compile(optimizer="adam", loss="mean_squared_error")
apid_tf = AdaptivePIDTf(Kp=7.0, Ki=0.5, Kd=0.01, rbf_model=rbf_tf)
target = 1.0
dt = 0.1
T = 10.0
time, measurements = simulate_system(apid_tf, target, dt, T)
plt.plot(time, measurements, label="Measured Value")
plt.axhline(y=target, color="r", linestyle="--", label="Target")
plt.xlabel("Time (s)")
plt.ylabel("Output")
plt.title("Adaptive RBF Neural PID Controller TF")
plt.legend()
plt.grid()
plt.show()
# Training RBF model with simulated data
rbf_tf = RBFAdaptiveModel(n_centers=5, input_dim=3)
rbf_tf.compile(optimizer="adam", loss="mean_squared_error")
apid_tf = AdaptivePIDTf(Kp=4.0, Ki=0.6, Kd=0.08, rbf_model=rbf_tf)
errors, control_signals = simulate_rbf_train_data(rbf_tf, apid_tf)
train_rbf_adaptive(rbf_tf, errors, control_signals, epochs=50)
target = 1.0
dt = 0.1
T = 10.0
time, measurements = simulate_system(apid_tf, target, dt, T)
plt.plot(time, measurements, label="Measured Value")
plt.axhline(y=target, color="r", linestyle="--", label="Target")
plt.ylim(max(measurements)-0.6, max(measurements)+0.1)
plt.xlabel("Time (s)")
plt.ylabel("Output")
plt.title("Adaptive RBF Neural PID Controller TF Trained")
plt.legend()
plt.grid()
plt.show()