mirror of
https://github.com/WallabyLester/RBF-aPID-Controller.git
synced 2026-02-07 05:02:01 +08:00
75 lines
2.0 KiB
Python
75 lines
2.0 KiB
Python
import tensorflow as tf
|
|
|
|
class AdaptivePIDTf:
|
|
""" PID class implemented for TensorFlow integration.
|
|
|
|
...
|
|
|
|
Attributes
|
|
----------
|
|
Kp : float
|
|
Proportional gain.
|
|
Ki : float
|
|
Integral gain.
|
|
Kd : float
|
|
Derivative gain.
|
|
rbf_model : RBFAdaptiveModel object
|
|
RBF adaptive model class instance.
|
|
|
|
Methods
|
|
-------
|
|
update(target, measured_value, dt):
|
|
Updates the control signal.
|
|
"""
|
|
def __init__(self, Kp, Ki, Kd, rbf_model):
|
|
""" Constructs PID gains, RBF model, and initial PID components.
|
|
|
|
Parameters
|
|
----------
|
|
Kp : float
|
|
Proportional gain.
|
|
Ki : float
|
|
Integral gain.
|
|
Kd : float
|
|
Derivative gain.
|
|
rbf_model : RBFAdaptiveModel object
|
|
RBF adaptive model class instance.
|
|
"""
|
|
self.Kp = Kp
|
|
self.Ki = Ki
|
|
self.Kd = Kd
|
|
self.rbf_model = rbf_model
|
|
self.prev_err = 0
|
|
self.error = 0
|
|
self.integral = 0
|
|
self.derivative = 0
|
|
|
|
def update(self, target, measured_value, dt):
|
|
""" Update the control signal according to error and adapt with RBF
|
|
model predictions.
|
|
|
|
Parameters
|
|
----------
|
|
target : float
|
|
Target setpoint.
|
|
measured_value : float
|
|
Actual value.
|
|
dt : float
|
|
Timestep.
|
|
|
|
Returns
|
|
-------
|
|
Control signal.
|
|
"""
|
|
self.error = target - measured_value
|
|
self.integral += self.error * dt
|
|
self.derivative = (self.error - self.prev_err) / dt
|
|
|
|
u = (self.Kp * self.error) + (self.Ki * self.integral) + (self.Kd*self.derivative)
|
|
|
|
control_signal_adapt = self.rbf_model(tf.constant([[self.error, self.integral, self.derivative]])).numpy().flatten()[0]
|
|
u += control_signal_adapt
|
|
|
|
self.prev_err = self.error
|
|
return u
|
|
|