Files
2024-10-09 15:55:28 -07:00

55 lines
2.2 KiB
Python

import unittest
import numpy as np
from RBF_numpy import RBFNetwork
class TestRBFNetwork(unittest.TestCase):
def setUp(self):
"""Set up an RBFNetwork instance for testing."""
self.input_dim = 3
self.n_centers = 5
self.x = np.array([6.0, 0.5, 0.2])
self.rbf_network = RBFNetwork(self.input_dim, self.n_centers)
def test_gaussian(self):
"""Test the Gaussian function."""
center = np.random.rand(1, self.input_dim)
expected_output = np.exp(-np.linalg.norm(self.x - center) ** 2 / (2 * self.rbf_network.sigma ** 2))
output = self.rbf_network.gaussian(self.x, center)
self.assertAlmostEqual(output, expected_output, places=5)
def test_predict(self):
"""Test the predict function."""
output_before = self.rbf_network.predict(self.x)
self.assertIsInstance(output_before, float)
[self.assertNotAlmostEqual(self.rbf_network.weights[i], self.rbf_network.weights[i+1])
for i in range(len(self.rbf_network.weights)-1)]
target = 1.0
self.rbf_network.train(self.x, target)
output_after = self.rbf_network.predict(self.x)
self.assertIsInstance(output_after, float)
self.assertNotEqual(output_before, output_after)
if not abs(target - output_after) < abs(target - output_before):
print("Output did not move closer to the target after prediction.")
def test_train(self):
"""Test the training function."""
target = 1.0
initial_weights = self.rbf_network.weights.copy()
output_before = np.dot(np.array([self.rbf_network.gaussian(self.x, center)
for center in self.rbf_network.centers]), initial_weights)
self.rbf_network.train(self.x, target)
self.assertFalse(np.array_equal(initial_weights, self.rbf_network.weights))
output_after = self.rbf_network.predict(self.x)
self.assertNotEqual(output_before, output_after)
if not abs(target - output_after) < abs(target - output_before):
print("Output did not move closer to the target after training.")
if __name__ == "__main__":
unittest.main()