Added training data simulation function.

This commit is contained in:
Andru Liu
2024-10-07 23:14:05 -07:00
parent b501cf0bd1
commit 9612bca9c9

View File

@@ -1,10 +1,9 @@
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from RBF_numpy import RBFNetwork
from aPID_numpy import AdaptivePIDNP
from RBF_tf import RBFAdaptiveModel
from RBF_tf import RBFAdaptiveModel, train_rbf_adaptive
from aPID_tf import AdaptivePIDTf
def simulate_system(controller, target, dt, T):
@@ -27,17 +26,58 @@ def simulate_system(controller, target, dt, T):
"""
time = np.arange(0, T, dt)
measured_value = 0
measured_value = 0.0
measurements = []
for t in time:
control_signal = controller.update(target, measured_value, dt)
measured_value += (control_signal - measured_value) * dt # Simple first-order system
measured_value += (control_signal - measured_value) * dt
measurements.append(measured_value)
print(f"Control Signal: {control_signal:.2f}, Measurement: {measured_value:.2f}")
return time, measurements
def simulate_rbf_train_data(rbf_tf, apid_tf, n_epochs=100, n_samples=100):
""" Simulate training data using the RBF model and aPID.
Parameters
----------
rbf_tf : RBFAdaptiveModel
RBF Adaptive Model class instance.
apid_tf : AdaptivePIDTf
Adaptive PID class instance.
n_epochs : int
Number of epochs to simulate.
n_samples : int
Number of samples per epoch to simulate.
Returns
-------
Errors: [error, integral, derivative] and target control signals.
"""
rbf_tf.compile(optimizer="adam", loss="mean_squared_error")
errors = []
control_signals = []
target = 1.0
measured_value = 0.0
dt = 0.1
for epoch in range(n_epochs):
print(f"Epoch: {epoch}")
for sample in range(n_samples):
control_signal = apid_tf.update(target, measured_value, dt)
measured_value += (control_signal - measured_value) * dt
error = target - measured_value
errors.append([error, apid_tf.integral, apid_tf.derivative])
control_signals.append(control_signal)
print(f".", end="", flush=True)
print("")
return np.array(errors), np.array(control_signals)
if __name__ == "__main__":
# numpy implementation
np.random.seed(20)