Example training usage with simulation data.

This commit is contained in:
Andru Liu
2024-10-07 23:14:47 -07:00
parent 9612bca9c9
commit 3c649a91f1

View File

@@ -118,3 +118,27 @@ if __name__ == "__main__":
plt.legend()
plt.grid()
plt.show()
# Training RBF model with simulated data
rbf_tf = RBFAdaptiveModel(n_centers=5, input_dim=3)
rbf_tf.compile(optimizer="adam", loss="mean_squared_error")
apid_tf = AdaptivePIDTf(Kp=4.0, Ki=0.6, Kd=0.08, rbf_model=rbf_tf)
errors, control_signals = simulate_rbf_train_data(rbf_tf, apid_tf)
train_rbf_adaptive(rbf_tf, errors, control_signals, epochs=50)
target = 1.0
dt = 0.1
T = 10.0
time, measurements = simulate_system(apid_tf, target, dt, T)
plt.plot(time, measurements, label="Measured Value")
plt.axhline(y=target, color="r", linestyle="--", label="Target")
plt.ylim(max(measurements)-0.6, max(measurements)+0.1)
plt.xlabel("Time (s)")
plt.ylabel("Output")
plt.title("Adaptive RBF Neural PID Controller TF Trained")
plt.legend()
plt.grid()
plt.show()