Files
FSRCNN-TensorFlow/utils.py
igv d6b13cce93 Optimizations
Mainly to speed up preprocessing and reduce memory usage
Also get rid of expand_data.py
2017-11-04 13:56:05 +02:00

451 lines
16 KiB
Python

"""
Scipy version > 0.18 is needed, due to 'mode' option from scipy.misc.imread function
"""
import os
import glob
from math import ceil
import subprocess
import io
from random import randrange, shuffle
import tensorflow as tf
from PIL import Image
import numpy as np
from multiprocessing import Pool, Lock, active_children
FLAGS = tf.app.flags.FLAGS
downsample = True
def preprocess(path, scale=3, distort=False):
"""
Preprocess single image file
(1) Read original image
(2) Downsample by scale factor
(3) Normalize
"""
try:
from wand.image import Image
except:
from PIL import Image
image = Image.open(path).convert('L')
(width, height) = image.size
if downsample:
image = image.crop((0, 0, width - width % scale, height - height % scale))
(width, height) = image.size
label_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape((height, width))
(new_width, new_height) = width // scale, height // scale
scaled_image = image.resize((new_width, new_height), Image.BICUBIC)
image.close()
if distort==True and randrange(3) == 0:
buf = io.BytesIO()
scaled_image.convert('RGB').save(buf, "JPEG", quality=randrange(85, 95, 5))
buf.seek(0)
scaled_image = Image.open(buf).convert('L')
#scaled_image.convert('RGB').save("lowres.png")
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.png', '-c:v', 'libx264', '-crf', '20', 'lowres.mkv'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.mkv', '-vframes', '1', 'lowres.png'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#scaled_image = Image.open('lowres.png').convert('L')
input_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape((new_height, new_width))
else:
input_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape(height, width)
scaled_image = image.resize((width * scale, height * scale), Image.BICUBIC)
(width, height) = scaled_image.size
label_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape(height, width)
else:
with Image(filename=path) as img:
img.alpha_channel = False
img.transform_colorspace("ycbcr")
if downsample:
img.crop(width = img.width - img.width % scale, height = img.height - img.height % scale)
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width // scale, height = img.height // scale, filter = "lanczos2", blur=1.0)
if distort==True and randrange(3) == 0:
img.compression_quality = randrange(85, 95, 5)
img.transform_colorspace("rgb")
jpeg_bin = img.make_blob('jpeg')
img = Image(blob=jpeg_bin)
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
else:
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width * scale, height = img.height * scale, filter = "catrom")
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
return input_ / 255, label_ / 255
def prepare_data(sess, dataset):
"""
Args:
dataset: choose train dataset or test dataset
For train dataset, output data would be ['.../t1.bmp', '.../t2.bmp', ..., '.../t99.bmp']
"""
if FLAGS.train:
data_dir = os.path.join(os.getcwd(), dataset)
data = []
for files in ('*.bmp', '*.png'):
data.extend(glob.glob(os.path.join(data_dir, files)))
shuffle(data)
else:
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)), "Set5")
data = sorted(glob.glob(os.path.join(data_dir, "*.bmp")))
return data
def modcrop(image, scale=3):
"""
To scale down and up the original image, first thing to do is to have no remainder while scaling operation.
We need to find modulo of height (and width) and scale factor.
Then, subtract the modulo from height (and width) of original image size.
There would be no remainder even after scaling operation.
"""
if len(image.shape) == 3:
h, w, _ = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w, :]
else:
h, w = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w]
return image
def train_input_worker(args):
image_data, config = args
image_size, label_size, stride, scale, padding, distort = config
single_input_sequence, single_label_sequence = [], []
input_, label_ = preprocess(image_data, scale, distort=distort)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h - image_size + 1, stride):
for y in range(0, w - image_size + 1, stride):
sub_input = input_[x : x + image_size, y : y + image_size]
x_loc, y_loc = x + padding, y + padding
sub_label = label_[x_loc * scale : x_loc * scale + label_size, y_loc * scale : y_loc * scale + label_size]
sub_input = sub_input.reshape([image_size, image_size, 1])
sub_label = sub_label.reshape([label_size, label_size, 1])
single_input_sequence.append(sub_input)
single_label_sequence.append(sub_label)
return [single_input_sequence, single_label_sequence]
def thread_train_setup(config):
"""
Spawns |config.threads| worker processes to pre-process the data
This has not been extensively tested so use at your own risk.
Also this is technically multiprocessing not threading, I just say thread
because it's shorter to type.
"""
if downsample == False:
import sys
sys.exit()
sess = config.sess
# Load data path
data = prepare_data(sess, dataset=config.data_dir)
# Initialize multiprocessing pool with # of processes = config.threads
pool = Pool(config.threads)
# Distribute |images_per_thread| images across each worker process
config_values = [config.image_size, config.label_size, config.stride, config.scale, config.padding // 2, config.distort]
images_per_thread = len(data) // config.threads
workers = []
for thread in range(config.threads):
args_list = [(data[i], config_values) for i in range(thread * images_per_thread, (thread + 1) * images_per_thread)]
worker = pool.map_async(train_input_worker, args_list)
workers.append(worker)
print("{} worker processes created".format(config.threads))
pool.close()
results = []
for i in range(len(workers)):
print("Waiting for worker process {}".format(i))
results.extend(workers[i].get(timeout=240))
print("Worker process {} done".format(i))
print("All worker processes done!")
sub_input_sequence, sub_label_sequence = [], []
for image in range(len(results)):
single_input_sequence, single_label_sequence = results[image]
sub_input_sequence.extend(single_input_sequence)
sub_label_sequence.extend(single_label_sequence)
arrdata = np.asarray(sub_input_sequence)
arrlabel = np.asarray(sub_label_sequence)
return (arrdata, arrlabel)
def train_input_setup(config):
"""
Read image files, make their sub-images, and save them as a h5 file format.
"""
if downsample == False:
import sys
sys.exit()
sess = config.sess
image_size, label_size, stride, scale, padding = config.image_size, config.label_size, config.stride, config.scale, config.padding // 2
# Load data path
data = prepare_data(sess, dataset=config.data_dir)
sub_input_sequence, sub_label_sequence = [], []
for i in range(len(data)):
input_, label_ = preprocess(data[i], scale, distort=config.distort)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h - image_size + 1, stride):
for y in range(0, w - image_size + 1, stride):
sub_input = input_[x : x + image_size, y : y + image_size]
x_loc, y_loc = x + padding, y + padding
sub_label = label_[x_loc * scale : x_loc * scale + label_size, y_loc * scale : y_loc * scale + label_size]
sub_input = sub_input.reshape([image_size, image_size, 1])
sub_label = sub_label.reshape([label_size, label_size, 1])
sub_input_sequence.append(sub_input)
sub_label_sequence.append(sub_label)
arrdata = np.asarray(sub_input_sequence)
arrlabel = np.asarray(sub_label_sequence)
return (arrdata, arrlabel)
def test_input_setup(config):
"""
Read image files, make their sub-images, and save them as a h5 file format.
"""
sess = config.sess
image_size, label_size, stride, scale, padding = config.image_size, config.label_size, config.stride, config.scale, config.padding // 2
# Load data path
data = prepare_data(sess, dataset="Test")
sub_input_sequence, sub_label_sequence = [], []
pic_index = 2 # Index of image based on lexicographic order in data folder
input_, label_ = preprocess(data[pic_index], config.scale)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
nx, ny = 0, 0
for x in range(0, h - image_size + 1, stride):
nx += 1
ny = 0
for y in range(0, w - image_size + 1, stride):
ny += 1
sub_input = input_[x : x + image_size, y : y + image_size]
x_loc, y_loc = x + padding, y + padding
sub_label = label_[x_loc * scale : x_loc * scale + label_size, y_loc * scale : y_loc * scale + label_size]
sub_input = sub_input.reshape([image_size, image_size, 1])
sub_label = sub_label.reshape([label_size, label_size, 1])
sub_input_sequence.append(sub_input)
sub_label_sequence.append(sub_label)
arrdata = np.asarray(sub_input_sequence)
arrlabel = np.asarray(sub_label_sequence)
return (arrdata, arrlabel, nx, ny)
def save_params(sess, params):
param_dir = "params/"
if not os.path.exists(param_dir):
os.makedirs(param_dir)
h = open(param_dir + "weights{}.txt".format('_'.join(str(i) for i in params)), 'w')
variables = dict((var.name, sess.run(var)) for var in tf.trainable_variables())
for name, weights in variables.items():
h.write("{} =\n".format(name[:name.index(':')]))
if len(weights.shape) < 4:
h.write("{}\n\n".format(weights.flatten().tolist()))
else:
h.write("[")
sep = False
for filter_x in range(len(weights)):
for filter_y in range(len(weights[filter_x])):
filter_weights = weights[filter_x][filter_y]
for input_channel in range(len(filter_weights)):
for output_channel in range(len(filter_weights[input_channel])):
val = filter_weights[input_channel][output_channel]
if sep:
h.write(', ')
h.write("{}".format(val))
sep = True
h.write("\n ")
h.write("]\n\n")
h.close()
def merge(images, size):
"""
Merges sub-images back into original image size
"""
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], size[2]))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img
def array_image_save(array, image_path):
"""
Converts np array to image and saves it
"""
image = Image.fromarray(array)
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(image_path)
print("Saved image: {}".format(image_path))
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, sigma=1.5):
size = int(sigma * 3) * 2 + 1
window = _tf_fspecial_gauss(size, sigma)
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1*L)**2
C2 = (K2*L)**2
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu1_sq = mu1*mu1
mu2_sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = tf.abs(tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_sq)
sigma2_sq = tf.abs(tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu2_sq)
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_mu2
if cs_map:
value = (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)
else:
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def tf_ms_ssim(img1, img2, sigma=1.5, weights=[0.1, 0.9]):
weights = weights / np.sum(weights)
window = _tf_fspecial_gauss(5, 1)
mssim = []
for i in range(len(weights)):
mssim.append(tf_ssim(img1, img2, sigma=sigma))
img1 = tf.nn.conv2d(img1, window, [1,2,2,1], 'VALID')
img2 = tf.nn.conv2d(img2, window, [1,2,2,1], 'VALID')
value = tf.reduce_sum(tf.multiply(tf.stack(mssim), weights))
return value
def bilinear_upsample_weights(factor, channels):
"""
Create weights matrix for transposed convolution with bilinear filter
initialization.
"""
filter_size = 2 * factor - factor % 2
center = factor - (1 if factor % 2 == 1 else 0.5)
og = np.ogrid[:filter_size, :filter_size]
upsample_kernel = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
weights = np.zeros((filter_size, filter_size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = upsample_kernel
return weights
def bicubic_kernel(x, B=1/3., C=1/3.):
"""https://de.wikipedia.org/wiki/Mitchell-Netravali-Filter"""
if abs(x) < 1:
return 1/6. * ((12-9*B-6*C)*abs(x)**3 + ((-18+12*B+6*C)*abs(x)**2 + (6-2*B)))
elif 1 <= abs(x) and abs(x) < 2:
return 1/6. * ((-B-6*C)*abs(x)**3 + (6*B+30*C)*abs(x)**2 + (-12*B-48*C)*abs(x) + (8*B+24*C))
else:
return 0
def build_filter(factor, B, C, channels=1):
size = factor * 4
k = np.zeros((size), dtype=np.float32)
for i in range(size):
x = (1 / factor) * (i - np.floor(size / 2) + 0.5)
k[i] = bicubic_kernel(x, B, C)
k = k / np.sum(k)
k = np.outer(k, k)
weights = np.zeros((size, size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = k
return weights
def bicubic_downsample(x, factor, B=1/3., C=1/3.):
"""Downsample x by a factor of factor, using the filter built by build_filter()
x: a rank 4 tensor with format NHWC
factor: downsampling factor (ex: factor=2 means the output size is (h/2, w/2))
"""
# using padding calculations from https://www.tensorflow.org/api_guides/python/nn#Convolution
kernel_size = factor * 4
padding = kernel_size - factor
pad_top = padding // 2
pad_bottom = padding - pad_top
pad_left = padding // 2
pad_right = padding - pad_left
# apply mirror padding
x = tf.pad(x, [[0,0], [pad_top,pad_bottom], [pad_left,pad_right], [0,0]], mode='REFLECT')
# downsampling performed by strided conv
x = tf.nn.conv2d(x, build_filter(factor, B, C), [1,factor,factor,1], 'VALID', data_format='NHWC')
return x