Files
FSRCNN-TensorFlow/utils.py
2020-12-16 11:19:13 +01:00

382 lines
13 KiB
Python

"""
Scipy version > 0.18 is needed, due to 'mode' option from scipy.misc.imread function
"""
import os
import glob
from math import ceil
import subprocess
import io
from random import randrange, shuffle
import tensorflow.compat.v1 as tf
from PIL import Image
import numpy as np
import multiprocessing
FLAGS = tf.app.flags.FLAGS
downsample = True
def preprocess(path, scale=3, distort=False):
"""
Preprocess single image file
(1) Read original image
(2) Downsample by scale factor
(3) Normalize
"""
try:
from wand.image import Image
except:
from PIL import Image
image = Image.open(path).convert('L')
(width, height) = image.size
if downsample:
image = image.crop((0, 0, width - width % scale, height - height % scale))
(width, height) = image.size
label_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape((height, width))
(new_width, new_height) = width // scale, height // scale
scaled_image = image.resize((new_width, new_height), Image.BICUBIC)
image.close()
if distort==True and randrange(3) == 0:
buf = io.BytesIO()
scaled_image.convert('RGB').save(buf, "JPEG", quality=randrange(85, 95, 5))
buf.seek(0)
scaled_image = Image.open(buf).convert('L')
#scaled_image.convert('RGB').save("lowres.png")
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.png', '-c:v', 'libx264', '-crf', '20', 'lowres.mkv'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.mkv', '-vframes', '1', 'lowres.png'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#scaled_image = Image.open('lowres.png').convert('L')
input_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape((new_height, new_width))
else:
input_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape(height, width)
scaled_image = image.resize((width * scale, height * scale), Image.BICUBIC)
(width, height) = scaled_image.size
label_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape(height, width)
else:
with Image(filename=path) as img:
img.alpha_channel = False
img.transform_colorspace("ycbcr")
if downsample:
img.crop(width = img.width - img.width % scale, height = img.height - img.height % scale)
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width // scale, height = img.height // scale, filter = "lanczos2", blur=1.0)
if distort==True and randrange(3) == 0:
img.compression_quality = randrange(85, 95, 5)
img.transform_colorspace("rgb")
jpeg_bin = img.make_blob('jpeg')
img = Image(blob=jpeg_bin)
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
else:
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width * scale, height = img.height * scale, filter = "catrom")
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
return input_ / 255, label_ / 255
def prepare_data(sess, dataset):
"""
Args:
dataset: choose train dataset or test dataset
For train dataset, output data would be ['.../t1.bmp', '.../t2.bmp', ..., '.../t99.bmp']
"""
if FLAGS.train:
data_dir = os.path.join(os.getcwd(), dataset)
data = []
for files in ('*.bmp', '*.png'):
data.extend(glob.glob(os.path.join(data_dir, files)))
shuffle(data)
else:
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)), "Set5")
data = sorted(glob.glob(os.path.join(data_dir, "*.bmp")))
return data
def modcrop(image, scale=3):
"""
To scale down and up the original image, first thing to do is to have no remainder while scaling operation.
We need to find modulo of height (and width) and scale factor.
Then, subtract the modulo from height (and width) of original image size.
There would be no remainder even after scaling operation.
"""
if len(image.shape) == 3:
h, w, _ = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w, :]
else:
h, w = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w]
return image
def train_input_worker(args):
image_data, config = args
image_size, label_size, stride, scale, padding, distort = config
single_input_sequence, single_label_sequence = [], []
input_, label_ = preprocess(image_data, scale, distort=distort)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h - image_size + 1, stride):
for y in range(0, w - image_size + 1, stride):
sub_input = input_[x : x + image_size, y : y + image_size]
x_loc, y_loc = x + padding, y + padding
sub_label = label_[x_loc * scale : x_loc * scale + label_size, y_loc * scale : y_loc * scale + label_size]
sub_input = sub_input.reshape([image_size, image_size, 1])
sub_label = sub_label.reshape([label_size, label_size, 1])
single_input_sequence.append(sub_input)
single_label_sequence.append(sub_label)
return [single_input_sequence, single_label_sequence]
def multiprocess_train_setup(config):
"""
Spawns several processes to pre-process the data
"""
if downsample == False:
import sys
sys.exit()
data = prepare_data(config.sess, dataset=config.data_dir)
with multiprocessing.Pool(max(multiprocessing.cpu_count() - 1, 1)) as pool:
config_values = [config.image_size, config.label_size, config.stride, config.scale, config.padding // 2, config.distort]
results = pool.map(train_input_worker, [(data[i], config_values) for i in range(len(data))])
sub_input_sequence, sub_label_sequence = [], []
for image in range(len(results)):
single_input_sequence, single_label_sequence = results[image]
sub_input_sequence.extend(single_input_sequence)
sub_label_sequence.extend(single_label_sequence)
arrdata = np.asarray(sub_input_sequence)
arrlabel = np.asarray(sub_label_sequence)
return (arrdata, arrlabel)
def test_input_setup(config):
sess = config.sess
# Load data path
data = prepare_data(sess, dataset="Test")
input_, label_ = preprocess(data[2], config.scale)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
arrdata = np.pad(input_.reshape([1, h, w, 1]), ((0,0),(2,2),(2,2),(0,0)), 'reflect')
if len(label_.shape) == 3:
h, w, _ = label_.shape
else:
h, w = label_.shape
arrlabel = label_.reshape([1, h, w, 1])
return (arrdata, arrlabel)
def merge(config, Y):
"""
Merges super-resolved image with chroma components
"""
h, w = Y.shape[1], Y.shape[2]
Y = Y.reshape(h, w, 1) * 255
Y = Y.round().astype(np.uint8)
data = prepare_data(config.sess, dataset="Test")
src = Image.open(data[2]).convert('YCbCr')
(width, height) = src.size
if downsample is False:
src = src.resize((width * config.scale, height * config.scale), Image.BICUBIC)
(width, height) = src.size
CbCr = np.frombuffer(src.tobytes(), dtype=np.uint8).reshape(height, width, 3)[:,:,1:]
img = np.concatenate((Y, CbCr), axis=-1)
return img
def save_params(sess, params):
param_dir = "params/"
if not os.path.exists(param_dir):
os.makedirs(param_dir)
h = open(param_dir + "weights{}.txt".format('_'.join(str(i) for i in params)), 'w')
variables = dict((var.name, sess.run(var)) for var in tf.trainable_variables())
for name, weights in variables.items():
h.write("{} =\n".format(name[:name.index(':')]))
if len(weights.shape) < 4:
h.write("{}\n\n".format(weights.flatten().tolist()))
else:
h.write("[")
sep = False
for filter_x in range(len(weights)):
for filter_y in range(len(weights[filter_x])):
filter_weights = weights[filter_x][filter_y]
for input_channel in range(len(filter_weights)):
for output_channel in range(len(filter_weights[input_channel])):
val = filter_weights[input_channel][output_channel]
if sep:
h.write(', ')
h.write("{}".format(val))
sep = True
h.write("\n ")
h.write("]\n\n")
h.close()
def array_image_save(array, image_path):
"""
Converts np array to image and saves it
"""
image = Image.fromarray(array, 'YCbCr')
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(image_path)
print("Saved image: {}".format(image_path))
def gradient_sensitive_loss(img1, img2):
dY = tf.image.sobel_edges(img1) / 4.
dX = tf.image.sobel_edges(img2) / 4.
M = tf.sqrt(tf.square(dY[:,:,:,:,0]) + tf.square(dY[:,:,:,:,1]))
#dY = tf.image.sobel_edges(img1 * M)
#dX = tf.image.sobel_edges(img2 * M)
return tf.losses.absolute_difference(dY, dX) \
+ tf.losses.absolute_difference((1.0 - M) * img1, (1.0 - M) * img2, weights=2.0)
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, sigma=1.5):
size = int(sigma * 3) * 2 + 1
window = _tf_fspecial_gauss(size, sigma)
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1*L)**2
C2 = (K2*L)**2
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu1_sq = mu1*mu1
mu2_sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = tf.abs(tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_sq)
sigma2_sq = tf.abs(tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu2_sq)
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_mu2
if cs_map:
value = (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)
else:
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def tf_ms_ssim(img1, img2, sigma=1.5, weights=[0.1, 0.9]):
weights = weights / np.sum(weights)
window = _tf_fspecial_gauss(5, 1)
mssim = []
for i in range(len(weights)):
mssim.append(tf_ssim(img1, img2, sigma=sigma))
img1 = tf.nn.conv2d(img1, window, [1,2,2,1], 'VALID')
img2 = tf.nn.conv2d(img2, window, [1,2,2,1], 'VALID')
value = tf.reduce_sum(tf.multiply(tf.stack(mssim), weights))
return value
def bilinear_upsample_weights(factor, channels):
"""
Create weights matrix for transposed convolution with bilinear filter
initialization.
"""
filter_size = 2 * factor - factor % 2
center = factor - (1 if factor % 2 == 1 else 0.5)
og = np.ogrid[:filter_size, :filter_size]
upsample_kernel = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
weights = np.zeros((filter_size, filter_size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = upsample_kernel
return weights
def bicubic_kernel(x, B=1/3., C=1/3.):
"""https://de.wikipedia.org/wiki/Mitchell-Netravali-Filter"""
if abs(x) < 1:
return 1/6. * ((12-9*B-6*C)*abs(x)**3 + ((-18+12*B+6*C)*abs(x)**2 + (6-2*B)))
elif 1 <= abs(x) and abs(x) < 2:
return 1/6. * ((-B-6*C)*abs(x)**3 + (6*B+30*C)*abs(x)**2 + (-12*B-48*C)*abs(x) + (8*B+24*C))
else:
return 0
def build_filter(factor, B, C, channels=1):
size = factor * 4
k = np.zeros((size), dtype=np.float32)
for i in range(size):
x = (1 / factor) * (i - np.floor(size / 2) + 0.5)
k[i] = bicubic_kernel(x, B, C)
k = k / np.sum(k)
k = np.outer(k, k)
weights = np.zeros((size, size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = k
return weights
def bicubic_downsample(x, factor, B=1/3., C=1/3.):
"""Downsample x by a factor of factor, using the filter built by build_filter()
x: a rank 4 tensor with format NHWC
factor: downsampling factor (ex: factor=2 means the output size is (h/2, w/2))
"""
# using padding calculations from https://www.tensorflow.org/api_guides/python/nn#Convolution
kernel_size = factor * 4
padding = kernel_size - factor
pad_top = padding // 2
pad_bottom = padding - pad_top
pad_left = padding // 2
pad_right = padding - pad_left
# apply mirror padding
x = tf.pad(x, [[0,0], [pad_top,pad_bottom], [pad_left,pad_right], [0,0]], mode='REFLECT')
# downsampling performed by strided conv
x = tf.nn.conv2d(x, build_filter(factor, B, C), [1,factor,factor,1], 'VALID', data_format='NHWC')
return x