mirror of
https://github.com/igv/FSRCNN-TensorFlow.git
synced 2025-12-12 14:24:06 +08:00
- decrease stride by 1 to overlap patches - train only once on the same image per epoch - replace low quality image - default model is 8-0-4-1
194 lines
6.6 KiB
Python
194 lines
6.6 KiB
Python
from utils import (
|
|
multiprocess_train_setup,
|
|
test_input_setup,
|
|
save_params,
|
|
merge,
|
|
array_image_save
|
|
)
|
|
|
|
import time
|
|
import os
|
|
import importlib
|
|
from random import randrange
|
|
|
|
import numpy as np
|
|
import tensorflow.compat.v1 as tf
|
|
|
|
from PIL import Image
|
|
import pdb
|
|
|
|
# Based on http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
|
|
class Model(object):
|
|
|
|
def __init__(self, sess, config):
|
|
self.sess = sess
|
|
self.arch = config.arch
|
|
self.fast = config.fast
|
|
self.train = config.train
|
|
self.epoch = config.epoch
|
|
self.scale = config.scale
|
|
self.radius = config.radius
|
|
self.batch_size = config.batch_size
|
|
self.learning_rate = config.learning_rate
|
|
self.distort = config.distort
|
|
self.params = config.params
|
|
|
|
self.padding = 4
|
|
# Different image/label sub-sizes for different scaling factors x2, x3, x4
|
|
scale_factors = [[40 + self.padding, 40], [20 + self.padding, 40], [14 + self.padding, 42], [12 + self.padding, 48]]
|
|
self.image_size, self.label_size = scale_factors[self.scale - 1]
|
|
|
|
self.stride = self.image_size - self.padding - 1
|
|
|
|
self.checkpoint_dir = config.checkpoint_dir
|
|
self.output_dir = config.output_dir
|
|
self.data_dir = config.data_dir
|
|
self.init_model()
|
|
|
|
|
|
def init_model(self):
|
|
if self.train:
|
|
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, 1], name='images')
|
|
self.labels = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, 1], name='labels')
|
|
else:
|
|
self.images = tf.placeholder(tf.float32, [None, None, None, 1], name='images')
|
|
self.labels = tf.placeholder(tf.float32, [None, None, None, 1], name='labels')
|
|
# Batch size differs in training vs testing
|
|
self.batch = tf.placeholder(tf.int32, shape=[], name='batch')
|
|
|
|
model = importlib.import_module(self.arch)
|
|
self.model = model.Model(self)
|
|
|
|
self.pred = self.model.model()
|
|
|
|
model_dir = "%s_%s_%s_%s" % (self.model.name.lower(), self.label_size, '-'.join(str(i) for i in self.model.model_params), "r"+str(self.radius))
|
|
self.model_dir = os.path.join(self.checkpoint_dir, model_dir)
|
|
|
|
self.loss = self.model.loss(self.labels, self.pred)
|
|
|
|
self.saver = tf.train.Saver()
|
|
|
|
def run(self):
|
|
global_step = tf.Variable(0, trainable=False)
|
|
optimizer = tf.train.AdamOptimizer(self.learning_rate)
|
|
deconv_mult = lambda grads: list(map(lambda x: (x[0] * 1.0, x[1]) if 'deconv' in x[1].name else x, grads))
|
|
grads = deconv_mult(optimizer.compute_gradients(self.loss))
|
|
self.train_op = optimizer.apply_gradients(grads, global_step=global_step)
|
|
|
|
tf.global_variables_initializer().run()
|
|
|
|
if self.load():
|
|
print(" [*] Load SUCCESS")
|
|
else:
|
|
print(" [!] Load failed...")
|
|
|
|
if self.params:
|
|
save_params(self.sess, self.model.model_params)
|
|
elif self.train:
|
|
self.run_train()
|
|
else:
|
|
self.run_test()
|
|
|
|
def run_train(self):
|
|
start_time = time.time()
|
|
print("Beginning training setup...")
|
|
train_data, train_label = multiprocess_train_setup(self)
|
|
print("Training setup took {} seconds".format(time.time() - start_time))
|
|
|
|
print("Training...")
|
|
start_time = time.time()
|
|
start_average, end_average, counter = 0, 0, 0
|
|
|
|
for ep in range(self.epoch):
|
|
# Run by batch images
|
|
batch_idxs = len(train_data) // self.batch_size
|
|
batch_average = 0
|
|
for idx in range(0, batch_idxs):
|
|
batch_images = train_data[idx * self.batch_size : (idx + 1) * self.batch_size]
|
|
batch_labels = train_label[idx * self.batch_size : (idx + 1) * self.batch_size]
|
|
|
|
exp = randrange(3)
|
|
if exp==0:
|
|
images = batch_images
|
|
labels = batch_labels
|
|
elif exp==1:
|
|
k = randrange(3)+1
|
|
images = np.rot90(batch_images, k, (1,2))
|
|
labels = np.rot90(batch_labels, k, (1,2))
|
|
elif exp==2:
|
|
k = randrange(2)+1
|
|
images = np.flip(batch_images, k)
|
|
labels = np.flip(batch_labels, k)
|
|
|
|
counter += 1
|
|
_, err = self.sess.run([self.train_op, self.loss], feed_dict={self.images: images, self.labels: labels, self.batch: self.batch_size})
|
|
batch_average += err
|
|
|
|
if counter % 10 == 0:
|
|
print("Epoch: [%2d], step: [%2d], time: [%4.4f], loss: [%.8f]" \
|
|
% ((ep+1), counter, time.time() - start_time, err))
|
|
|
|
# Save every 500 steps
|
|
if counter % 500 == 0:
|
|
self.save(counter)
|
|
|
|
batch_average = float(batch_average) / batch_idxs
|
|
if ep < (self.epoch * 0.2):
|
|
start_average += batch_average
|
|
elif ep >= (self.epoch * 0.8):
|
|
end_average += batch_average
|
|
|
|
# Compare loss of the first 20% and the last 20% epochs
|
|
start_average = float(start_average) / (self.epoch * 0.2)
|
|
end_average = float(end_average) / (self.epoch * 0.2)
|
|
print("Start Average: [%.6f], End Average: [%.6f], Improved: [%.2f%%]" \
|
|
% (start_average, end_average, 100 - (100*end_average/start_average)))
|
|
|
|
# Linux desktop notification when training has been completed
|
|
# title = "Training complete - FSRCNN"
|
|
# notification = "{}-{}-{} done training after {} epochs".format(self.image_size, self.label_size, self.stride, self.epoch);
|
|
# notify_command = 'notify-send "{}" "{}"'.format(title, notification)
|
|
# os.system(notify_command)
|
|
|
|
|
|
def run_test(self):
|
|
test_data, test_label = test_input_setup(self)
|
|
|
|
print("Testing...")
|
|
|
|
start_time = time.time()
|
|
result = np.clip(self.pred.eval({self.images: test_data, self.labels: test_label, self.batch: 1}), 0, 1)
|
|
passed = time.time() - start_time
|
|
img1 = tf.convert_to_tensor(test_label, dtype=tf.float32)
|
|
img2 = tf.convert_to_tensor(result, dtype=tf.float32)
|
|
psnr = self.sess.run(tf.image.psnr(img1, img2, 1))
|
|
ssim = self.sess.run(tf.image.ssim(img1, img2, 1))
|
|
print("Took %.3f seconds, PSNR: %.6f, SSIM: %.6f" % (passed, psnr, ssim))
|
|
|
|
result = merge(self, result)
|
|
image_path = os.path.join(os.getcwd(), self.output_dir)
|
|
image_path = os.path.join(image_path, "test_image.png")
|
|
|
|
array_image_save(result, image_path)
|
|
|
|
def save(self, step):
|
|
model_name = self.model.name + ".model"
|
|
|
|
if not os.path.exists(self.model_dir):
|
|
os.makedirs(self.model_dir)
|
|
|
|
self.saver.save(self.sess,
|
|
os.path.join(self.model_dir, model_name),
|
|
global_step=step)
|
|
|
|
def load(self):
|
|
print(" [*] Reading checkpoints...")
|
|
|
|
ckpt = tf.train.get_checkpoint_state(self.model_dir)
|
|
if ckpt and ckpt.model_checkpoint_path:
|
|
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
|
|
self.saver.restore(self.sess, os.path.join(self.model_dir, ckpt_name))
|
|
return True
|
|
else:
|
|
return False
|